AI Article Synopsis

  • The study investigates the transition of poly(N-isopropylacrylamide) from a coil to a globule state using spin probe EPR spectroscopy with a special TEMPO radical.
  • Cu(II) ions were used as a quenching agent to analyze the TEMPO radical's behavior in both the globule and the pre-collapse states of the polymer.
  • EPR spectrum simulations indicate that initially, molten globules form, which then collapse further, causing density increases as water molecules are expelled.

Article Abstract

Coil to globule transition in poly(N-isopropylacrylamide) aqueous solutions was studied using spin probe continuous-wave electronic paramagnetic resonance (CW EPR) spectroscopy with an amphiphilic TEMPO radical as a guest molecule. Using Cu(II) ions as the "quencher" for fast-moving radicals in the liquid phase allowed obtaining the individual spectra of TEMPO radicals in polymer globule and observing inhomogeneities in solutions before globule collapsing. EPR spectra simulations confirm the formation of molten globules at the first step with further collapsing and water molecules coming out of the globule, making it denser.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588346PMC
http://dx.doi.org/10.3390/polym13213829DOI Listing

Publication Analysis

Top Keywords

aqueous solutions
8
spin probe
8
epr spectroscopy
8
inhomogeneities pnipam
4
pnipam aqueous
4
solutions inside
4
inside view
4
view spin
4
probe epr
4
spectroscopy coil
4

Similar Publications

Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.

View Article and Find Full Text PDF

The decline in research for new antimicrobials, combined with the rise in bacterial resistance, has become a critical issue that is expected to worsen over time. As an alternative, health sciences have integrated materials engineering to develop new bioactive compounds through the interaction of nanoparticles with plant-derived compounds. These compounds offer advantages such as high bioavailability and low cost, exemplified by , a plant native to the Brazilian Cerrado.

View Article and Find Full Text PDF

[Construction of a 17-estradiol sensor based on a magnetic graphene oxide/aptamer separating material].

Se Pu

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.

View Article and Find Full Text PDF

Chlorinated coumarins, which are as cytotoxic as highly toxic halobenzoquinones toward CHO-K1 cells, have recently been identified as disinfection byproducts in drinking water disinfection processes. Therefore, detecting coumarins in water samples collected at various stages from drinking water treatment plants helps assess the formation of chlorinated coumarins in drinking water. Hence, a simple, rapid, accurate, and sensitive method for quantifying coumarins in water samples is required.

View Article and Find Full Text PDF

Phthalates (PAEs) are endocrine-disrupting chemicals that are widely present in everyday life and enter the human body through various pathways. The release of PAEs into the environment through pathways that include leaching, evaporation, abrasion, and the use of personal care products exposes humans to PAEs via ingestion, inhalation, and dermal absorption. Pregnant women, as a particularly vulnerable population, risk adverse newborn growth and development when exposed to PAEs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!