Rheological and Morphological Properties of Oil Palm Fiber-Reinforced Thermoplastic Composites for Fused Deposition Modeling (FDM).

Polymers (Basel)

Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.

Published: October 2021

Fused deposition modelling (FDM) is a filament-based rapid prototyping technology that allows new composite materials to be introduced into the FDM process as long as they can be manufactured in feedstock filament form. The purpose of this research was to analyze the rheological behavior of oil palm fiber-reinforced acrylonitrile butadiene styrene (ABS) composites when used as a feedstock material, as well as to determine the best processing conditions for FDM. The composite's shear thinning behavior was observed, and scanning electron microscopy was used to reveal its composition. The morphological result found that there was a good fiber/matrix adhesion with a 3 wt% fiber loading, as no fiber pullouts or gaps developed between the oil palm fiber and ABS. However, some pores and fiber pullouts were found with a 5 and 7 wt% fiber loading. Next, the rheological results showed that the increment of fiber content (wt%) increased the viscosity. This discovery can definitely be used in the extrusion process for making wire filament for FDM. The shear thinning effect was increased by adding 3, 5, or 7 wt% of oil palm fiber. The non-Newtonian index (n) of the composites increased as the number of shear rates increased, indicating that the fiber loading had a significant impact on the rheological behavior. As the fiber loading increased, the viscosity and shear stress values increased as well. As a result, oil fiber reinforced polymer composites can be used as a feedstock filament for FDM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587635PMC
http://dx.doi.org/10.3390/polym13213739DOI Listing

Publication Analysis

Top Keywords

oil palm
16
fiber loading
16
fiber
10
palm fiber-reinforced
8
fused deposition
8
feedstock filament
8
rheological behavior
8
composites feedstock
8
shear thinning
8
wt% fiber
8

Similar Publications

Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Plants available in the spontaneous flora are recently studied as ingredients for food formulation in response to the demands for sustainable plant-based foods. The aim of this study was to obtain a new assortment of spreadable creams, free of palm oil, with good textural, rheological and colour attributes, high antioxidant activity and low cytotoxicity, from . (European beech) seeds.

View Article and Find Full Text PDF

First Report of Causing Collar Rot of gilo in Ghana.

Plant Dis

January 2025

University of Ghana College of Basic and Applied Sciences, Biotechnology Centre, Accra, Greater Accra, Ghana;

African eggplant (Solanum aethiopicum gilo group) is a nutritious vegetable widely commercialized in Ghana. In the 2021 planting season (May-July), collar rot symptoms were observed on African eggplant on a farm at Domeabra, Legon, and Okumaning in the Central (N5° 48' 11″, W1° 26' 48″), Greater Accra (N5° 39' 34″, W0° 11' 34″) and Eastern (N6° 8' 34″, W0° 55' 59″) regions of Ghana, respectively. Disease incidence was 8-15% in the different farms.

View Article and Find Full Text PDF

The prevalence of obesity increases yearly in the world. The traditional local diet of the Western Regions of Cameroon was suspected to be the main contributor to the high prevalence of obesity in these Regions. This study aimed to evaluate the effects of a Cameroon-comparable fat diet on visceral obesity in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!