A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas-Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries. | LitMetric

Measuring fluid characteristics is of high importance in various industries such as the polymer, petroleum, and petrochemical industries, etc. Flow regime classification and void fraction measurement are essential for predicting the performance of many systems. The efficiency of multiphase flow meters strongly depends on the flow parameters. In this study, MCNP (Monte Carlo N-Particle) code was employed to simulate annular, stratified, and homogeneous regimes. In this approach, two detectors (NaI) were utilized to detect the emitted photons from a cesium-137 source. The registered signals of both detectors were decomposed using a discrete wavelet transform (DWT). Following this, the low-frequency (approximation) and high-frequency (detail) components of the signals were calculated. Finally, various features of the approximation signals were extracted, using the average value, kurtosis, standard deviation (STD), and root mean square (RMS). The extracted features were thoroughly analyzed to find those features which could classify the flow regimes and be utilized as the inputs to a network for improving the efficiency of flow meters. Two different networks were implemented for flow regime classification and void fraction prediction. In the current study, using the wavelet transform and feature extraction approach, the considered flow regimes were classified correctly, and the void fraction percentages were calculated with a mean relative error (MRE) of 0.4%. Although the system presented in this study is proposed for measuring the characteristics of petroleum fluids, it can be easily used for other types of fluids such as polymeric fluids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587655PMC
http://dx.doi.org/10.3390/polym13213647DOI Listing

Publication Analysis

Top Keywords

flow meters
12
void fraction
12
feature extraction
8
flow
8
petrochemical industries
8
flow regime
8
regime classification
8
classification void
8
wavelet transform
8
flow regimes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!