The development of new bio-based coating materials to be applied on cellulosic and plastic based substrates, with improved performances compared to currently available products and at the same time with improved sustainable end of life options, is a challenge of our times. Enabling cellulose or bioplastics with proper functional coatings, based on biopolymer and functional materials deriving from agro-food waste streams, will improve their performance, allowing them to effectively replace fossil products in the personal care, tableware and food packaging sectors. To achieve these challenging objectives some molecules can be used in wet or solid coating formulations, e.g., cutin as a hydrophobic water- and grease-repellent coating, polysaccharides such as chitosan-chitin as an antimicrobial coating, and proteins as a gas barrier. This review collects the available knowledge on functional coatings with a focus on the raw materials used and methods of dispersion/application. It considers, in addition, the correlation with the desired final properties of the applied coatings, thus discussing their potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586997 | PMC |
http://dx.doi.org/10.3390/polym13213640 | DOI Listing |
Nanoscale
January 2025
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
The development of chiral organic materials with strong non-reciprocal chiroptical features may have major implications for cutting-edge technological applications. In this work, a new synthesized chiral 1,4-diketo-3,6-dithienylpyrrolo[3,4-]pyrrole dye, bearing two ()-3,7-dimethyl-1-octyl alkyl chains on the lactam moieties and functionalized with two lateral 9-anthracenyl π-conjugated units, exhibited strong non-reciprocal chiroptical properties in thin films, with some important differences between samples prepared by drop casting and spin coating. A detailed study was performed to unravel the intimate structure-property relationship, involving computational analysis, different microscopy techniques and synchrotron radiation Mueller matrix polarimetry imaging (SR-MMP) investigation.
View Article and Find Full Text PDFEur Heart J
January 2025
State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
Background And Aims: Members of the CCN matricellular protein family are crucial in various biological processes. This study aimed to characterize vascular cell-specific effects of CCN5 on neointimal formation and its role in preventing in-stent restenosis (ISR) after percutaneous coronary intervention (PCI).
Methods: Stent-implanted porcine coronary artery RNA-seq and mouse injury-induced femoral artery neointima single-cell RNA sequencing were performed.
Bioact Mater
May 2025
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China.
Implantable neural electrodes are key components of brain-computer interfaces (BCI), but the mismatch in mechanical and biological properties between electrode materials and brain tissue can lead to foreign body reactions and glial scarring, and subsequently compromise the long-term stability of electrical signal transmission. In this study, we proposed a new concept for the design and bioaugmentation of implantable electrodes (bio-array electrodes) featuring a heterogeneous gradient structure. Different composite polyaniline-gelatin-alginate based conductive hydrogel formulations were developed for electrode surface coating.
View Article and Find Full Text PDFRSC Adv
January 2025
Nanoscience Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416 004 Maharashtra India
This research investigates the microbial inactivation potential of ternary TiO-CuO-chitosan nanocomposites (TCC NCs) applied as surface coatings on cowhide leather. Initially, bare TiO nanoparticles (NPs) and binary TiO-CuO (TC) NCs, with varying CuO NPs content, were prepared using an sol-gel method. These binary TC NCs were then modified with chitosan at varying weight percentages (2%, 4%, 6%, and 8%).
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
Electrical fires pose significant threats to the lives and property safety of people. Although utilizing coatings to impart conductivity and flame retardancy to materials is convenient and reliable, traditional layer-by-layer preparation methods have the limitations of cost, convenience and scalability. Therefore, a single-layer coating that simultaneously imparts excellent conductivity and flame retardancy to materials presents broader application prospects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!