Wheat Biocomposite Extraction, Structure, Properties and Characterization: A Review.

Polymers (Basel)

Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.

Published: October 2021

Biocomposite materials create a huge opportunity for a healthy and safe environment by replacing artificial plastic and materials with natural ingredients in a variety of applications. Furniture, construction materials, insulation, and packaging, as well as medical devices, can all benefit from biocomposite materials. Wheat is one of the world's most widely cultivated crops. Due to its mechanical and physical properties, wheat starch, gluten, and fiber are vital in the biopolymer industry. Glycerol as a plasticizer considerably increased the elongation and water vapor permeability of wheat films. Wheat fiber developed mechanical and thermal properties as a result of various matrices; wheat gluten is water insoluble, elastic, non-toxic, and biodegradable, making it useful in biocomposite materials. This study looked at the feasibility of using wheat plant components such as wheat, gluten, and fiber in the biocomposite material industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587943PMC
http://dx.doi.org/10.3390/polym13213624DOI Listing

Publication Analysis

Top Keywords

biocomposite materials
12
wheat
8
gluten fiber
8
wheat gluten
8
materials
5
wheat biocomposite
4
biocomposite extraction
4
extraction structure
4
structure properties
4
properties characterization
4

Similar Publications

Enhancing Syagrus romanzoffiana lignocellulosic fibers' properties by ecological treatment with sodium bicarbonate for applications in sustainable lightweight biocomposites.

Int J Biol Macromol

January 2025

Chemical Engineering Department, College of Engineering, University of Ha'il, PO Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Department, Faculty of Engineering, University of Blida, PO Box 270, Blida 09000, Algeria.

Investigating the fascinating world of natural fibers, where Syagrus romanzoffiana fibers (SrFs) are promising substitutes for glass and synthetic fibers in composite materials, is more than interesting. The improvement of SrFs through an environmentally friendly treatment employing sodium bicarbonate (NaHCO₃) at different concentrations (5 %, 10 %, 20 %, and 30 % by weight) over various durations (24, 72, and 168 h) is the subject of this study. The objective is to provide a sustainable and economical approach to enhancing fiber characteristics.

View Article and Find Full Text PDF

This work analyzes the production of a hydrogel composed of mucilage from the cactus (OFI) and sodium alginate. In obtaining the new material, green synthesis was used, free of chemical compounds, and applied in the treatment of textile effluent for the adsorption of methylene blue (MB). The hydrogel was characterized by FT-IR, XRD, SEM, and zeta potential.

View Article and Find Full Text PDF

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

This research explores the biosorption of Rhodamine B (Rd-B) and Sunset Yellow (SY) dyes using cross-linked chitosan-alginate (Ch-A) biocomposite beads, combining experimental investigations with theoretical studies to elucidate the biosorption mechanisms. The biocomposite beads were synthesized through an eco-friendly cross-linking method, and their structural properties were characterized using various characterization techniques. Complementary theoretical studies using Monte Carlo (MC) simulations and molecular dynamics (MD) calculations provided insights into the molecular interactions between the dyes and the biocomposite beads.

View Article and Find Full Text PDF

The inherent heterogeneity, poor compatibility with polymers, and dark color of lignin limit its application in composites. In this study, original lignin (OL) was fractionated sequentially using four green organic solvents to obtain lignin fractions with different chemical structures. These well-defined lignin fractions were then blended with polybutylene succinate (PBS) to fabricate biocomposites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!