The permeability transition (PT) is an increased permeation of the inner mitochondrial membrane due to the opening of the PT pore (PTP), a Ca-activated high conductance channel involved in Ca homeostasis and cell death. Alterations of the PTP have been associated with many pathological conditions and its targeting represents an incessant challenge in the field. Although the modulation of the PTP has been extensively explored, the lack of a clear picture of its molecular nature increases the degree of complexity for any target-based approach. Recent advances suggest the existence of at least two mitochondrial permeability pathways mediated by the F-ATP synthase and the ANT, although the exact molecular mechanism leading to channel formation remains elusive for both. A full comprehension of this to-pore conversion will help to assist in drug design and to develop pharmacological treatments for a fine-tuned PT regulation. Here, we will focus on regulatory mechanisms that impinge on the PTP and discuss the relevant literature of PTP targeting compounds with particular attention to F-ATP synthase and ANT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587538 | PMC |
http://dx.doi.org/10.3390/molecules26216463 | DOI Listing |
Antibiotics (Basel)
December 2024
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
() infection causes tuberculosis (TB). TB is one of the most intractable infectious diseases, causing over 1.13 million deaths annually.
View Article and Find Full Text PDFCommun Biol
November 2024
Department of Medicine, University of Udine, 33100, Udine, Italy.
Cyclophilin (CyP) D is a regulator of the mitochondrial F-ATP synthase. Here we report the discovery of a form of CyPD lacking the first 10 (mouse) or 13 (human) N-terminal residues (ΔN-CyPD), a protein region with species-specific features. NMR studies on recombinant human full-length CyPD (FL-CyPD) and ΔN-CyPD form revealed that the N-terminus is highly flexible, in contrast with the rigid globular part.
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2025
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
Background: Non-tuberculous mycobacteria (NTM) infection presents a growing global health problem and requires new antibiotics targeting enzymes that are essential for the pathogens under various metabolic conditions, with high target specificity, good solubility and with attractive combinatory potency.
Methods: SQ31f was synthesized by a simplified synthesis protocol, and its effect on growth inhibition of fast- and slow-growing NTM and clinical isolates, whole-cell ATP depletion, ex vivo macrophages and its potency in combination with other antibiotics were evaluated. Molecular docking studies were employed to assess SQ31f's binding mode.
RSC Med Chem
October 2024
Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372.
Antimicrob Agents Chemother
December 2024
Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
Nontuberculous mycobacteria (NTM) infections are extremely difficult to treat due to a natural resistance to many antimicrobials. TBAJ-587 is a novel diarylquinoline, which shows higher anti-tuberculosis activity, lower lipophilicity, and weaker inhibition of hERG channels than bedaquiline (BDQ). The susceptibilities of 11 NTM reference strains and 194 clinical isolates to TBAJ-587 were determined by the broth microdilution assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!