Constant monitoring of road surfaces helps to show the urgency of deterioration or problems in the road construction and to improve the safety level of the road surface. Conditional generative adversarial networks (cGAN) are a powerful tool to generate or transform the images used for crack detection. The advantage of this method is the highly accurate results in vector-based images, which are convenient for mathematical analysis of the detected cracks at a later time. However, images taken under established parameters are different from images in real-world contexts. Another potential problem of cGAN is that it is difficult to detect the shape of an object when the resulting accuracy is low, which can seriously affect any further mathematical analysis of the detected crack. To tackle this issue, this paper proposes a method called improved cGAN with attention gate (ICGA) for roadway surface crack detection. To obtain a more accurate shape of the detected target object, ICGA establishes a multi-level model with independent stages. In the first stage, everything except the road is treated as noise and removed from the image. These images are stored in a new dataset. In the second stage, ICGA determines the cracks. Therefore, ICGA focuses on the redistribution of cracks, not the auxiliary elements in the image. ICGA adds two attention gates to a U-net architecture and improves the segmentation capacities of the generator in pix2pix. Extensive experimental results on dashboard camera images of the Unsupervised Llamas dataset show that our method has better performance than other state-of-the-art methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587934PMC
http://dx.doi.org/10.3390/s21217405DOI Listing

Publication Analysis

Top Keywords

crack detection
12
road surface
8
surface crack
8
conditional generative
8
generative adversarial
8
adversarial networks
8
mathematical analysis
8
analysis detected
8
images
6
road
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!