The color of transformer oil can be one of the first indicators determining the quality of the transformer oil and the condition of the power transformer. The current method of determining the color index (CI) of transformer oil utilizes a color comparator based on the American Society for Testing and Materials (ASTM) D1500 standard, which requires a human observer, leading to human error and a limited number of samples tested per day. This paper reports on the utilization of ultra violet-blue laser at 405- and 450-nm wavelengths to measure the CI of transformer oil. In total, 20 transformer oil samples with CI ranging from 0.5 to 7.5 were measured at optical pathlengths of 10 and 1 mm. A linear regression model was developed to determine the color index of the transformer oil. The equation was validated and verified by measuring the output power of a new batch of transformer oil samples. Data obtained from the measurements were able to quantify the CI accurately with root-mean-square errors (RMSEs) of 0.2229 for 405 nm and 0.4129 for 450 nm. This approach shows the commercialization potential of a low-cost portable device that can be used on-site for the monitoring of power transformers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587144 | PMC |
http://dx.doi.org/10.3390/s21217292 | DOI Listing |
Sensors (Basel)
December 2024
State Grid Tianjin Electric Power Research Institute, Tianjin 300180, China.
Large oil-immersed transformers have metal-enclosed shells, making it difficult to visually inspect the internal insulation condition. Visual inspection of internal defects is carried out using a self-developed micro-robot in this work. Carbon trace is the main visual characteristic of internal insulation defects.
View Article and Find Full Text PDFTalanta
January 2025
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China. Electronic address:
Dissolved gas analysis (DGA) is an effective method for diagnosing potential faults in oil-immersed power transformers. Metal oxide semiconductor (MOS) gas sensors exhibit excellent performance. However, high operating temperatures can accelerate device aging, thereby reducing the reliability of online monitoring.
View Article and Find Full Text PDFPLoS One
January 2025
College of Electric Power, Inner Mongolia University of Technology, Hohhot, China.
The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Hydro Québec's Research Institute, Varennes, QC J3X 1S1, Canada.
Unlike traditional tap changers, which require transformers to be de-energized before making changes, On-Load Tap Changers (OLTCs) can adjust taps while the transformer is in service, ensuring continuous power supply during voltage regulation. OLTCs enhance grid reliability and support load balancing, reducing strain on the network and optimizing power quality. Their importance has grown as the demand for stable voltage and the integration of renewables has increased, making them vital for modern and resilient power systems.
View Article and Find Full Text PDFHeliyon
December 2024
Africa New Energies, UK.
The contaminated transformer oil is one of the major causes of failure in the power system. Detection and continuous monitoring of moisture content in transformer oil is required for the smooth operation of a system. In this paper, a Fractal-based Sinusoidal-shaped Capacitive Sensor (FSCS) is proposed to increase the contact area between capacitor plates and dielectric medium by 17.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!