A key aspect of urban blasting engineering is evaluating the safety of the blasting dynamic load on the adjacent high-density polyethylene water supply pipeline and controlling the negative impact of the blasting vibration load on the pipeline. According to the special characteristics of the soil layer in Shenzhen coastal city, a field blasting test of a full-scale pre-buried HDPE pipeline was carried out, and the distribution characteristics of the blasting vibration velocity and dynamic strain were analyzed. The finite element model was established by LSDYNA, and the reliability of the calculation model and parameters was verified by comparing with the field test data. At the same time, the dynamic response characteristics of pipelines with different buried depths, operating water conveyance pressures, and diameters under blasting vibration loads were studied. Combined with the circumferential allowable stress control criterion of the pipeline, the safety control standard of the blasting vibration velocity of the HDPE water supply pipeline under different working conditions was proposed. The results show that the circumferential compressive strain of the HDPE pipe is the most affected by blasting vibration, and the pipe with the shortest blasting center distance has the largest response. The vibration velocity and equivalent stress of the pipeline increase with the increase of buried depth, internal pressure, and diameter. The vibration velocity and equivalent stress of the explosion side at the same section of the pipeline are greater than those of the back explosion side. Based on the dimensionless analysis, the vibration velocity prediction model of the buried depth, operating pressure, and diameter of the pipeline is proposed. The safety control velocity of the pipeline is 25 cm/s, and the vibration velocity of the upper surface is 22.5 cm/s according to the Mises yield strength criterion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587429PMC
http://dx.doi.org/10.3390/s21217252DOI Listing

Publication Analysis

Top Keywords

blasting vibration
24
vibration velocity
24
vibration
11
pipeline
10
blasting
9
hdpe pipeline
8
water supply
8
supply pipeline
8
safety control
8
velocity equivalent
8

Similar Publications

To investigate the changes in the strength and deformation of the blast load-damaged sandstone roof plate under cyclic loading and unloading conditions at different confining pressures, a triaxial loading device was used to carry out graded cyclic unloading tests on specimens with different degrees of damage, and the test results were summarized. The effects of blast-load-induced damage, confining pressure and loading stage on the strength, cohesion, internal friction angle, residual strain and volumetric strain were analyzed. (1) Compared with that of the undamaged specimen at a confining pressure of 0 MPa, the peak stress reductions in the vibration-damaged and blast-damaged specimens were 4.

View Article and Find Full Text PDF

Blasting excavation is widely used in mining, tunneling and construction industries, but it leads to produce ground vibration which can seriously damage the urban communities. The peak particle velocity (PPV) is one of main indicators for determining the extent of ground vibration. Owing to the complexity of blasting process, there is controversy over which parameters will be considered as the inputs for empirical equations and machine learning (ML) algorithms.

View Article and Find Full Text PDF

This study introduces a comprehensive methodology for selecting blasthole diameters in open-pit mining, aiming to reduce the environmental impact while addressing the limitations of traditional empirical methods that often yield suboptimal productivity, cost efficiency. By integrating critical parameters such as bench height, rock and explosive properties, desired fragmentation size, production scale, and operational specifics, the methodology seeks to minimize negative effects on nearby communities while optimizing blasting practices. The methodology consists of four key steps: calculating potential diameters based on bench height, verifying influential factors affecting diameter selection, assessing environmental impacts of blasting activities, such as blasting-induced vibration and flyrock, and ultimately choosing the optimal diameter.

View Article and Find Full Text PDF

The application of blasting in modern engineering construction is prized for its speed, efficiency, and cost-effectiveness. However, the resultant vibrations can have significant adverse effects on surrounding buildings and residents. The challenge of optimizing blasting procedures to satisfy excavation needs while minimizing vibration impacts is a critical concern in blasting excavation.

View Article and Find Full Text PDF

Prediction of Blast Vibration Velocity of Buried Steel Pipe Based on PSO-LSSVM Model.

Sensors (Basel)

November 2024

Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan 430056, China.

In order to ensure the safe operation of adjacent buried pipelines under blast vibration, it is of great practical engineering significance to accurately predict the peak vibration velocity ofburied pipelines under blasting loads. Relying on the test results of the buried steel pipe blast model test, a sensitivity analysis of relevant influencing factors was carried out by using the gray correlation analysis method. A least squares support vector machine (LS-SVM) model was established to predict the peak vibration velocity of the pipeline and determine the best parameter combination in the LS-SVM model through a local particle swarm optimization (PSO), and the results of the PSO-LSSVM model were predicted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!