In this paper, a dual-polarized four-port 2 × 2 series fed antenna array operating at 28 GHz with beam-switching capability is proposed. The antenna array uses a simple passive beamforming network to switch the main beam. The presented antenna design is suitable for 5G user equipment and high data rates applications by which it has a compact size with low cost and complexity. The size of the antenna is 37.2 × 37.2 mm2 including the ground plane, and it produces 10 different switched beams by using only two simple 3 dB/90∘ couplers which create the required amplitudes and phase excitations for the antenna elements. A one-port simple feeding mechanism including Peregrine PE42525 SPDT switch modules and a power divider is used to generate and measure the 10 switched beams. The antenna design is implemented on a two-layer 0.203 mm thick low-loss (tanδ = 0.0027) Rogers 4003C substrate, and it has a measured 10 dB impedance bandwidth of 4 GHz (14.3%, from 26 GHz to 30 GHz) for all ports. Measured peak isolation between any dual-polarized ports of the antenna is better than 30 dB. The antenna has an average measured realized gain of 8.9 dBi and around 10 dB side lobe level (SLL) for all beams. The antenna has 3-dB coverage of 80∘ to 90∘ in 2D space and it has a maximum of ±26∘ beam-steering angle. The antenna is designed and simulated using Ansys HFSS and fabricated using regular PCB processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587950PMC
http://dx.doi.org/10.3390/s21217138DOI Listing

Publication Analysis

Top Keywords

antenna array
12
antenna
10
spdt switch
8
beamforming network
8
antenna design
8
switched beams
8
beams antenna
8
ghz
5
ghz antenna
4
beams
4

Similar Publications

This study presents the design and analysis of a compact 28 GHz MIMO antenna for 5G wireless networks, incorporating simulations, measurements, and machine learning (ML) techniques to optimize its performance. With dimensions of 3.19 λ₀ × 3.

View Article and Find Full Text PDF

Compact wearable microstrip antenna design using hybrid quasi-Newton and Taguchi optimization.

Sci Rep

January 2025

Department of Computer Science and Engineering, Symbiosis Institute of Technology, Symbiosis University Pune, Pune, India.

A novel approach is introduced for designing a miniaturized wearable antenna. Utilizing Taguchi's philosophy typically entails numerous experimentations runs, but our method significantly reduces these by employing a quasi-Newton approach with gradient descent to estimate process parameter ranges. This hybrid technique expedites convergence by streamlining experiments.

View Article and Find Full Text PDF

This study presents the design of a high-gain 16 × 16-slot antenna array with a low sidelobe level (SLL) using a tapered ridge gap waveguide feeding network for Ka-band applications. The proposed antenna element includes four cavity-backed slot antennas. A tapered feeding network is designed and utilized for unequal feeding of the radiating elements.

View Article and Find Full Text PDF

Key Structure Parameters for Designing High-Performance Substrates of Surface-Enhanced Infrared Absorption Spectroelectrochemistry.

Anal Chem

December 2024

State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) plays a crucial role in understanding the interfacial reaction mechanisms at the molecular level, achieving an enhancement factor (EF) of up to 10. However, when this technique is integrated with electrochemistry (EC-ATR-SEIRAS), the EF is significantly reduced by ten- to hundred-fold. Thus, understanding of the key parameters that contribute to the EF is of great importance in designing high-performance substrates and extending the application for EC-SEIRAS.

View Article and Find Full Text PDF

A novel design strategy for improving the radiative performance of simultaneous multibeam (SMB) phased arrays is addressed. The proposed scheme relies on the adoption of mixed and multiple antenna element factors with a dynamic selection of their radiation patterns whose choice depends on the desired SMB pointing directions. In addition, a Penrose-inspired clustering technique is also employed for reducing the array feed points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!