Ego-Lane Index Estimation Based on Lane-Level Map and LiDAR Road Boundary Detection.

Sensors (Basel)

Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China.

Published: October 2021

Correct ego-lane index estimation is essential for lane change and decision making for intelligent vehicles, especially in global navigation satellite system (GNSS)-challenged environments. To achieve this, we propose an ego-lane index estimation approach in an urban scenario based on particle filter (PF). The particles are initialized and propagated by dead reckoning with inertial measurement unit (IMU) and odometry. A lane-level map is used to navigate the particles taking advantage of topologic and geometric information of lanes. GNSS single-point positioning (SPP) can provide position estimation with meter-level accuracy in urban environments, which can limit drift introduced by dead reckoning for updating the weight of each particle. Light detection and ranging (LiDAR) is a common sensor in an intelligent vehicle. A LiDAR-based road boundary detection method provides distance measurements from the vehicle to the left/right road boundaries, which provides a measurement for importance weighting. However, the high precision of the LiDAR measurements may put a tight constraint on the distribution of particles, which can lead to particle degeneration with sparse particle sets. To deal with this problem, we propose a novel step that shifts particles laterally based on LiDAR measurements instead of importance weighting in the traditional PF scheme. We tested our methods on an urban expressway at a low traffic volume period to ensure road boundaries can be detected by LiDAR measurements at most time steps. Experimental results prove that our improved PF scheme can correctly estimate ego-lane index at all time steps, while the traditional PF scheme produces wrong estimations at some time steps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587028PMC
http://dx.doi.org/10.3390/s21217118DOI Listing

Publication Analysis

Top Keywords

ego-lane estimation
12
lidar measurements
12
time steps
12
lane-level map
8
road boundary
8
boundary detection
8
dead reckoning
8
road boundaries
8
traditional scheme
8
lidar
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!