A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detecting Phase-Synchrony Connectivity Anomalies in EEG Signals. Application to Dyslexia Diagnosis. | LitMetric

Objective Dyslexia diagnosis is a challenging task, since traditional diagnosis methods are not based on biological markers but on behavioural tests. Although dyslexia diagnosis has been addressed by these tests in clinical practice, it is difficult to extract information about the brain processes involved in the different tasks and, then, to go deeper into its biological basis. Thus, the use of biomarkers can contribute not only to the diagnosis but also to a better understanding of specific learning disorders such as dyslexia. In this work, we use Electroencephalography (EEG) signals to discover differences among controls and dyslexic subjects using signal processing and artificial intelligence techniques. Specifically, we measure phase synchronization among channels, to reveal the functional brain network activated during auditory processing. On the other hand, to explore synchronicity patterns risen by low-level auditory processing, we used specific stimuli consisting in band-limited white noise, modulated in amplitude at different frequencies. The differential information contained in the functional (i.e., synchronization) network has been processed by an anomaly detection system that addresses the problem of subjects variability by an outlier-detection method based on vector quantization. The results, obtained for 7 years-old children, show that the proposed method constitutes an useful tool for clinical use, with the area under ROC curve (AUC) values up to 0.95 in differential diagnosis tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588444PMC
http://dx.doi.org/10.3390/s21217061DOI Listing

Publication Analysis

Top Keywords

dyslexia diagnosis
12
eeg signals
8
auditory processing
8
diagnosis
6
detecting phase-synchrony
4
phase-synchrony connectivity
4
connectivity anomalies
4
anomalies eeg
4
signals application
4
dyslexia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!