Combined Use of EMG and EEG Techniques for Neuromotor Assessment in Rehabilitative Applications: A Systematic Review.

Sensors (Basel)

Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93, 20054 Segrate, Italy.

Published: October 2021

Electroencephalography (EEG) and electromyography (EMG) are widespread and well-known quantitative techniques used for gathering biological signals at cortical and muscular levels, respectively. Indeed, they provide relevant insights for increasing knowledge in different domains, such as physical and cognitive, and research fields, including neuromotor rehabilitation. So far, EEG and EMG techniques have been independently exploited to guide or assess the outcome of the rehabilitation, preferring one technique over the other according to the aim of the investigation. More recently, the combination of EEG and EMG started to be considered as a potential breakthrough approach to improve rehabilitation effectiveness. However, since it is a relatively recent research field, we observed that no comprehensive reviews available nor standard procedures and setups for simultaneous acquisitions and processing have been identified. Consequently, this paper presents a systematic review of EEG and EMG applications specifically aimed at evaluating and assessing neuromotor performance, focusing on cortico-muscular interactions in the rehabilitation field. A total of 213 articles were identified from scientific databases, and, following rigorous scrutiny, 55 were analyzed in detail in this review. Most of the applications are focused on the study of stroke patients, and the rehabilitation target is usually on the upper or lower limbs. Regarding the methodological approaches used to acquire and process data, our results show that a simultaneous EEG and EMG acquisition is quite common in the field, but it is mostly performed with EMG as a support technique for more specific EEG approaches. Non-specific processing methods such as EEG-EMG coherence are used to provide combined EEG/EMG signal analysis, but rarely both signals are analyzed using state-of-the-art techniques that are gold-standard in each of the two domains. Future directions may be oriented toward multi-domain approaches able to exploit the full potential of combined EEG and EMG, for example targeting a wider range of pathologies and implementing more structured clinical trials to confirm the results of the current pilot studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588321PMC
http://dx.doi.org/10.3390/s21217014DOI Listing

Publication Analysis

Top Keywords

eeg emg
20
eeg
8
systematic review
8
emg
7
rehabilitation
5
combined emg
4
emg eeg
4
techniques
4
eeg techniques
4
techniques neuromotor
4

Similar Publications

Intermittent Fasting Enhances Motor Coordination Through Myelin Preservation in Aged Mice.

Aging Cell

January 2025

Department of Neurology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Integrating dietary interventions have been extensively studied for their health benefits, such as Alzheimer's disease, Huntington's disease, and aging. However, it is necessary to fully understand the mechanisms of long-term effects and practical applications of these dietary interventions for health. A 10-week intermittent fasting (IMF) regimen was implemented on the aging animals in the current study.

View Article and Find Full Text PDF

Purpose: Pain is a multidimensional, unpleasant emotional and sensory experience, and accurately assessing its intensity is crucial for effective management. However, individuals with cognitive impairments or language deficits may struggle to accurately report their pain. EEG provides insight into the neurological aspects of pain, while facial EMG captures the sensory and peripheral muscle responses.

View Article and Find Full Text PDF

Cortical excitability on sleep deprivation measured by transcranial magnetic stimulation: A systematic review and meta-analysis.

Brain Res Bull

January 2025

Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China. Electronic address:

Sleep deprivation is a common public problem, and researchers speculated its neurophysiological mechanisms related to cortical excitatory and inhibitory activity. Recently, transcranial magnetic stimulation combined with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) have been used to assess cortical excitability in sleep-deprived individuals, but the results were inconsistent. Therefore, we conducted a meta-analysis to summarize relevant TMS-evoked indices of excitability and inhibition for exploring the cortical effects of sleep deprivation.

View Article and Find Full Text PDF

The effects of diazepam on sleep depend on the photoperiod.

Acta Pharmacol Sin

January 2025

Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University, Medical Centre, Leiden, 2333, ZC, The Netherlands.

Daylength (i.e., photoperiod) provides essential information for seasonal adaptations of organisms.

View Article and Find Full Text PDF

Corticomuscular coherence existed at the single motor unit level.

Neuroimage

January 2025

School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China. Electronic address:

The monosynaptic cortico-motoneuronal connections suggest the possibility of individual motor units (MUs) receiving independent commands from motor cortex. However, previous studies that used corticomuscular coherence (CMC) between electroencephalogram (EEG) signals and electromyogram (EMG) signals have not directly explored the corticospinal functionality at the single motoneuron level. The objective of this study is to find out whether synchronous activities exist between the motor cortex and individual MUs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!