The aim of this study was to determine the effects of thermal stress (TS) on changes in blood biochemical parameters and fluid electrolyte levels in young adult men with moderate and high levels of physical activity. Thirty men (22.67 ± 2.02 years) were exposed to four 12-min sauna sessions (temperature: 90-91 °C; relative humidity: 14-16%) with four 6-min cool-down breaks. The evaluated variables were anthropometric, physiological, and hematological characteristics. The mean values of HR (102.5 bpm) were within the easy effort range, whereas HR (143.3 bpm) values were within the very difficult effort range. A significant increase was noted in pO2 ( < 0.001), total cholesterol ( < 0.008), HDL ( < 0.006) and LDL cholesterol ( < 0.007). Significant decreases were observed in the SBP (by 9.7 mmHg), DBP (by 6.9 mmHg) ( < 0.001), pH ( < 0.001), aHCO- ( < 0.005), sHCO3- ( < 0.003), BE (ecf) ( < 0.022), BE (B), ctCO (for both < 0.005), glucose ( < 0.001), and LA ( < 0.036). High 72-min TS did not induce significant changes in the physiological parameters of young and physically active men who regularly use the sauna, excluding significant loss of body mass. We can assume that relatively long sauna sessions do not disturb homeostasis and are safe for the health of properly prepared males.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583525 | PMC |
http://dx.doi.org/10.3390/ijerph182111503 | DOI Listing |
J Ethnopharmacol
January 2025
Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:
Ethnopharmacological Relevance: Nonalcoholic steatohepatitis (NASH) poses significant health risks; however, effective treatment options remain scarce. Yinchen-Gancao decoction (YG, a formula composed of Traditional Chinese Medicine Artemisia capillaris Thunb. and Glycyrrhiza uralensis Fisch.
View Article and Find Full Text PDFDent Mater
January 2025
Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518108, China. Electronic address:
Objective: Photopolymerized resin composites are widely used as dental filling materials. However, the shrinkage stress generated during photopolymerization can lead to marginal microcracks and eventual restoration failure. Accurate assessment of the stress evolution in dental restorations, particularly in complex cavity geometries, is critical for improving the performance and longevity of the dental filling materials.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
University of Science and Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing, 100083, CHINA.
Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics and INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
We study the process of thermal convection in jammed emulsions with a yield-stress rheology. We find that heat transfer occurs via an intermittent mechanism, whereby intense short-lived convective "heat bursts" are spaced out by long-lasting conductive periods. This behavior is the result of a sequence of fluidization-rigidity transitions, rooted in a nontrivial interplay between emulsion yield-stress rheology and plastic activity, which we characterize via a statistical analysis of the dynamics at the droplet scale.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, China.
spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!