To meet the global challenges of climate change and human activity pressure on biodiversity conservation, it has become vital to map such pressure hotspots. Large areas, such as nation-wide regions, are difficult to map from the point of view of the resources needed for such mapping (human resources, hard and soft resources). European biodiversity policies have focused on restoring degraded ecosystems by at least 10% by 2020, and new policies aim to restore up to 30% of degraded ecosystems by 2030. In this study, methods developed and applied for the assessment of the degradation state of the ecosystems in a semi-automatic manner for the entire Romanian territory (238,391 km) are presented. The following ecosystems were analyzed: forestry, grassland, rivers, lakes, caves and coastal areas. The information and data covering all the ecoregions of the Romania (~110,000 km) were analyzed and processed, based on GIS and remote sensing techniques. The largest degraded areas were identified within the coastal area (49.80%), grassland ecosystems (38.59%) and the cave ecosystems (2.66%), while 27.64% of rivers ecosystems were degraded, followed by 8.52% of forest ecosystems, and 14.05% of lakes ecosystems. This analysis can contribute to better definition of the locations of the most affected areas, which will yield a useful spatial representation for future ecological reconstruction strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583292 | PMC |
http://dx.doi.org/10.3390/ijerph182111416 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Molecular Ecology and Evolution Group, School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom.
Phenotypic plasticity may pave the way for rapid adaptation to newly encountered environments. Although it is often contested, there is growing evidence that initial plastic responses of ancestral populations to new environmental cues may promote subsequent adaptation. However, we do not know whether plasticity to cues present in the ancestral habitat (past-cue plasticity) can facilitate adaptation to novel cues.
View Article and Find Full Text PDFEven in some common species, the genetic variation key to resilience is slipping away.
View Article and Find Full Text PDFSurprise finding of few health payoffs complicates push to replace biomass fuel.
View Article and Find Full Text PDFScience
January 2025
Wildlife Institute of India, Dehradun, India.
Recovery of large yet ecologically important carnivores poses a formidable global challenge. Tiger () recovery in India, the world's most populated region, offers a distinct opportunity to evaluate the socio-ecological drivers of megafauna recovery. Tiger occupancy increased by 30% (at 2929 square kilometers per year) over the past two decades, leading to the largest global population occupying ~138,200 square kilometers.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Geography, University College London, London, England, United Kingdom.
Evaluating the dynamic co-evolution and feedback mechanisms within socio-ecological systems is crucial for determining the resilience and sustainability of environmental governance strategies. The grass-livestock system, as a complex entity encompassing livestock nutrition, foraging behavior, vegetation ecology, pastoralists' economic income, and policy interventions, indicates that any change in a single element may trigger a chain reaction within the system. This paper uses a system dynamics approach to construct a simulation model of the grass-livestock system in alpine pastoral areas, simulating the long-term dynamic co-evolution of the socio-ecological system in the Qilian Mountains region of China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!