Currently, the etiology of many neuromuscular disorders remains unknown. Many of them are characterized by aberrations in the maturation of the neuromuscular junction (NMJ) postsynaptic machinery. Unfortunately, the molecular factors involved in this process are still largely unknown, which poses a great challenge for identifying potential therapeutic targets. Here, we identified Tks5 as a novel interactor of αdystrobrevin-1, which is a crucial component of the NMJ postsynaptic machinery. Tks5 has been previously shown in cancer cells to be an important regulator of actin-rich structures known as invadosomes. However, a role of this scaffold protein at a synapse has never been studied. We show that Tks5 is crucial for remodeling of the NMJ postsynaptic machinery by regulating the organization of structures similar to the invadosomes, known as synaptic podosomes. Additionally, it is involved in the maintenance of the integrity of acetylcholine receptor (AChR) clusters and regulation of their turnover. Lastly, our data indicate that these Tks5 functions may be mediated by its involvement in recruitment of actin filaments to the postsynaptic machinery. Collectively, we show for the first time that the Tks5 protein is involved in regulation of the postsynaptic machinery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585010PMC
http://dx.doi.org/10.3390/ijms222112051DOI Listing

Publication Analysis

Top Keywords

postsynaptic machinery
24
nmj postsynaptic
12
neuromuscular junction
8
structures invadosomes
8
tks5
6
postsynaptic
6
machinery
6
tks5 regulates
4
regulates synaptic
4
synaptic podosome
4

Similar Publications

Article Synopsis
  • * Researchers treated Wistar dams with VPA to investigate behavioral and neurological changes in their male offspring, which exhibited impairments in social interaction, sensorimotor coordination, and synaptic activity measured by fEPSP.
  • * Findings indicated that while the overall metaplastic response was similar between VPA-treated and control animals, key autism-related gene expressions were significantly reduced in the offspring of VPA-treated rats, suggesting a potential adaptation mechanism in response to disrupted gene expression.
View Article and Find Full Text PDF

Misprocessing of amyloid precursor protein (APP) is one of the major causes of Alzheimer's disease. APP comprises a large extracellular region, a single transmembrane helix and a short cytoplasmic tail containing an NPxY motif (normally referred to as the YENPTY motif). Talins are synaptic scaffold proteins that connect the cytoskeletal machinery to the plasma membrane via binding NPxY motifs in the cytoplasmic tail of integrins.

View Article and Find Full Text PDF

Oligodendrocytes use postsynaptic proteins to coordinate myelin formation on axons of distinct neurotransmitter classes.

bioRxiv

November 2024

Section of Developmental Biology, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA, 80445.

Article Synopsis
  • Axon myelination plays a crucial role in refining neuronal circuits by adjusting myelin sheath patterns across different axon types, but the coordination behind this process is still not fully understood.
  • Recent studies suggest that neuronal activity and the release of vesicles can stimulate the formation of myelin, and oligodendrocytes express proteins that may aid in their interaction with axons for proper myelination.
  • In larval zebrafish, the protein Gephyrin (Gphn) appears to selectively enhance myelin formation on GABAergic axons, with findings showing that in Gphn-deficient larvae, there were longer myelin sheaths on GABAergic axons
View Article and Find Full Text PDF

Glutamate, Gangliosides, and the Synapse: Electrostatics at Work in the Brain.

Int J Mol Sci

August 2024

Faculty of Sciences, Department of Biology, University of Aix-Marseille, INSERM UA16, 13015 Marseille, France.

The synapse is a piece of information transfer machinery replacing the electrical conduction of nerve impulses at the end of the neuron. Like many biological mechanisms, its functioning is heavily affected by time constraints. The solution selected by evolution is based on chemical communication that, in theory, cannot compete with the speed of nerve conduction.

View Article and Find Full Text PDF

Molecular Adaptations of BDNF/NT-4 Neurotrophic and Muscarinic Pathways in Ageing Neuromuscular Synapses.

Int J Mol Sci

July 2024

Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain.

Article Synopsis
  • Age-related issues like sarcopenia lead to physical disabilities, and the study focuses on changes in neurotrophic factors (BDNF and NT-4) and muscarinic signaling at neuromuscular junctions in aging rats compared to young ones.
  • The research found imbalances in several critical proteins associated with neurotransmission pathways, including alterations in receptor expression and reduced levels of specific channels, while other aspects remained stable.
  • The study suggests that these signaling pathways could potentially be adjusted to counteract age-related negative changes, warranting further research to improve neuromuscular function and enhance the quality of life for older adults.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!