The majority of glioblastoma (GBM) patients require the administration of dexamethasone (DEXA) to reduce brain inflammation. DEXA activates the glucocorticoid receptor (GR), which can consequently crosstalk with the mineralocorticoid receptor (MR). However, while GR signaling is well studied in GBM, little is known about the MR in brain tumors. We examined the implication of the MR in GBM considering its interplay with DEXA. Together with gene expression studies in patient cohorts, we used human GBM cell lines and patient-derived glioma stem cells (GSCs) to assess the impact of MR activation and inhibition on cell proliferation, response to radiotherapy, and self-renewal capacity. We show that in glioma patients, expression inversely correlates with tumor grade. Furthermore, low expression correlates with poorer survival in low grade glioma while in GBM the same applies to classical and mesenchymal subtypes, but not proneural tumors. MR activation by aldosterone suppresses the growth of some GBM cell lines and GSC self-renewal. In GBM cells, the MR antagonist spironolactone (SPI) can promote proliferation, radioprotection and cooperate with DEXA. In summary, we propose that MR signaling is anti-proliferative in GBM cells and blocks the self-renewal of GSCs. Contrary to previous evidence obtained in other cancer types, our results suggest that SPI has no compelling anti-neoplastic potential in GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584062 | PMC |
http://dx.doi.org/10.3390/ijms222111656 | DOI Listing |
J Cardiovasc Electrophysiol
December 2024
Tulane University School of Medicine, Department of Cardiology, Tulane Research Innovation for Arrhythmia Discovery, New Orleans, Louisiana, USA.
Introduction: Catheter ablation of persistent atrial fibrillation yields sub-optimal success rates partly due to the considerable heterogeneity within the patient population. Identifying distinct patient phenotypes based on post-ablation prognosis could improve patient selection for additional therapies and optimize treatment strategies.
Methods: We studied all patients who underwent catheter ablation of persistent atrial fibrillation in the DECAAF II trial.
Brain Res
December 2024
Molecular and Cellular Biology Laboratory, Department of Pharmacology, NIIMS Institute of Pharmacy, NIIMS University Jaipur, Rajasthan, India. Electronic address:
Objective: The study aims to explore Resveratrol (RES) as a potential therapeutic agent for Glioblastoma multiforme (GBM), a challenging brain cancer. RES, a polyphenolic compound with known benefits in various diseases including cancer, has shown promise in inhibiting glioma progression through its effects on the AKT signaling pathways. However, its limited ability to cross the blood-brain barrier restricts its clinical application in GBM treatment.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy.
Background: Cellular prion protein (PrP) is a widely expressed membrane-anchored glycoprotein, which has been associated with the development and progression of several types of human malignancies, controlling cancer stem cell activity. However, the different molecular mechanisms regulated by PrP in normal and tumor cells have not been characterized yet.
Methods: To assess the role of PrP in patient-derived glioblastoma stem cell (GSC)-enriched cultures, we generated cell lines in which PrP was either overexpressed or down-regulated and investigated, in 2D and 3D cultures, its role in cell proliferation, migration, and invasion.
Discov Oncol
December 2024
Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China.
Background: ZBTB11 is a putative transcription factor with an N-terminal BTB domain and tandem C-terminal zinc finger motifs. Recent studies have suggested a potential role for ZBTB11 in tumorigenesis. However, the biological significance of ZBTB11 in different cancer types remains uncertain.
View Article and Find Full Text PDFCell Death Differ
December 2024
Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
Disulfidptosis is a recently identified form of cell death characterized by the aberrant accumulation of cellular disulfides. This process primarily occurs in glucose-starved cells expressing higher levels of SLC7A11 and has been proposed as a therapeutic strategy for cancers with hyperactive SCL7A11. However, the potential for inducing disulfidptosis through other mechanisms in cancers remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!