Gestational diabetes mellitus (GDM) is one of the most common metabolic diseases in pregnant women. Its early diagnosis seems to have a significant impact on the developing fetus, the course of delivery, and the neonatal period. It may also affect the later stages of child development and subsequent complications in the mother. Therefore, the crux of the matter is to find a biopredictor capable of singling out women at risk of developing GDM as early as the very start of pregnancy. Apart from the well-known molecules with a proven and clear-cut role in the pathogenesis of GDM, e.g., adiponectin and leptin, a potential role of newer biomolecules is also emphasized. Less popular and less known factors with different mechanisms of action include: galectins, growth differentiation factor-15, chemerin, omentin-1, osteocalcin, resistin, visfatin, vaspin, irisin, apelin, fatty acid-binding protein 4 (FABP4), fibroblast growth factor 21, and lipocalin-2. The aim of this review is to present the potential and significance of these 13 less known biomolecules in the pathogenesis of GDM. It seems that high levels of FABP4, low levels of irisin, and high levels of under-carboxylated osteocalcin in the serum of pregnant women can be used as predictive markers in the diagnosis of GDM. Hopefully, future clinical trials will be able to determine which biomolecules have the most potential to predict GDM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584125PMC
http://dx.doi.org/10.3390/ijms222111578DOI Listing

Publication Analysis

Top Keywords

biomolecules pathogenesis
8
gestational diabetes
8
diabetes mellitus
8
pregnant women
8
pathogenesis gdm
8
high levels
8
gdm
6
novel biomolecules
4
pathogenesis gestational
4
mellitus gestational
4

Similar Publications

Exploring Tetraselmis chui microbiomes-functional metagenomics for novel catalases and superoxide dismutases.

Appl Microbiol Biotechnol

January 2025

Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.

The focus on microalgae for applications in several fields, e.g. resources for biofuel, the food industry, cosmetics, nutraceuticals, biotechnology, and healthcare, has gained increasing attention over the last decades.

View Article and Find Full Text PDF

RNA Structure: Past, Future, and Gene Therapy Applications.

Int J Mol Sci

December 2024

ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA.

First believed to be a simple intermediary between the information encoded in deoxyribonucleic acid and that functionally displayed in proteins, ribonucleic acid (RNA) is now known to have many functions through its abundance and intricate, ubiquitous, diverse, and dynamic structure. About 70-90% of the human genome is transcribed into protein-coding and noncoding RNAs as main determinants along with regulatory sequences of cellular to populational biological diversity. From the nucleotide sequence or primary structure, through Watson-Crick pairing self-folding or secondary structure, to compaction via longer distance Watson-Crick and non-Watson-Crick interactions or tertiary structure, and interactions with RNA or other biopolymers or quaternary structure, or with metabolites and biomolecules or quinary structure, RNA structure plays a critical role in RNA's lifecycle from transcription to decay and many cellular processes.

View Article and Find Full Text PDF

Background: Saliva is a protein-rich body fluid for noninvasive discovery of biomolecules, containing both human and microbial components, associated with various chronic diseases. Type-2 diabetes (T2D) imposes a significant health and socio-economic burden. Prior research on T2D salivary microbiome utilized methods such as metagenomics, metatranscriptomics, 16S rRNA sequencing, and low-throughput proteomics.

View Article and Find Full Text PDF

The simultaneous sequencing of multiple types of biomolecules can facilitate understanding various forms of regulation occurring in cells. Cosequencing of miRNA and mRNA at single-cell resolution is challenging, and to date, only a few such studies (examining a quite limited number of cells) have been reported. Here, we developed a parallel single-cell small RNA and mRNA coprofiling method (PSCSR-seq V2) that enables miRNA and mRNA coexpression analysis in many cells.

View Article and Find Full Text PDF

Measuring virus in biofluids is complicated by confounding biomolecules coisolated with viral nucleic acids. To address this, we developed an affinity-based microfluidic device for specific capture of intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach used an engineered angiotensin-converting enzyme 2 to capture intact virus from plasma and other complex biofluids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!