Soil salinity stress has become a serious roadblock for food production worldwide since it is one of the key factors affecting agricultural productivity. Salinity and drought are predicted to cause considerable loss of crops. To deal with this difficult situation, a variety of strategies have been developed, including plant breeding, plant genetic engineering, and a wide range of agricultural practices, including the use of plant growth-promoting rhizobacteria (PGPR) and seed biopriming techniques, to improve the plants' defenses against salinity stress, resulting in higher crop yields to meet future human food demand. In the present review, we updated and discussed the negative effects of salinity stress on plant morphological parameters and physio-biochemical attributes via various mechanisms and the beneficial roles of PGPR with 1-Aminocyclopropane-1-Carboxylate(ACC) deaminase activity as green bio-inoculants in reducing the impact of saline conditions. Furthermore, the applications of ACC deaminase-producing PGPR as a beneficial tool in seed biopriming techniques are updated and explored. This strategy shows promise in boosting quick seed germination, seedling vigor and plant growth uniformity. In addition, the contentious findings of the variation of antioxidants and osmolytes in ACC deaminase-producing PGPR treated plants are examined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584133 | PMC |
http://dx.doi.org/10.3390/ijms222111461 | DOI Listing |
AMB Express
January 2025
Central Laboratory for Agricultural Climate, Agricultural Research Center, Dokki, Giza, Egypt.
Afforestation projects on saline land, using Eucalyptus trees and ectomycorrhizal fungi, are crucial for restoring affected areas and promoting ecological and economic benefits, particularly in saline-affected areas. This study was conducted to isolate Pisolithus sp. and estimate its potential to improve the growth performance of Eucalyptus globulus seedlings under salt-stress conditions.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan.
Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.
View Article and Find Full Text PDFEMBO J
January 2025
College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
Chloride (Cl) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China. Electronic address:
The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan. Electronic address:
Emerging contaminants in estuarine sediments, such as bis(2-ethylhexyl) phthalate (DEHP) and titanium dioxide nanoparticles (nTiO), pose ecotoxicological risks that may be exacerbated by co-contamination. This study investigated the impacts of DEHP, nTiO, and their combinations at environmentally relevant concentrations (1, 10, and 100 μg/g) on the soil nematode Caenorhabditis elegans in estuarine-like sediment (14.25‰ salinity).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!