Background: To assess the risk of aspiration, nutrient tolerance, and gastric emptying of patients in ICUs, gastric ultrasound can provide information about the gastric contents. Using established formulas, the gastric residual volume (GRV) can be calculated in a standardized way by measuring the gastric antrum. The purpose of this study was to determine the GRV in a cohort of enterally fed patients using a miniaturized ultrasound device to achieve knowledge about feasibility and the GRV over time during the ICU stay. The findings could contribute to the optimization of enteral nutrition (EN) therapy.
Methods: A total of 217 ultrasound examinations with 3 measurements each (651 measurements in total) were performed twice daily (morning and evening) in a longitudinal observational study on 18 patients with EN in the interdisciplinary surgical ICU of Saarland University Medical Center. The measured values of the GRV were analyzed in relation to the clinical course, the nutrition, and other parameters.
Results: Measurements could be performed without interrupting the flow of clinical care and without pausing EN. The GRV was significantly larger with sparsely auscultated bowel sounds than with normal and excited bowel sounds ( < 0.01). Furthermore, a significantly larger GRV was present when using a high-caloric/low-protein nutritional product compared to an isocaloric product ( = 0.02). The GRV at the morning and evening measurements showed no circadian rhythm. When comparing the first and last ultrasound examination of each patient, there was a tendency towards an increased GRV ( = 0.07).
Conclusion: The GRV measured by miniaturized ultrasound devices can provide important information about ICU patients without restricting treatment procedures in the ICU. Measurements are possible while EN therapy is ongoing. Further studies are needed to establish gastric ultrasound as a management tool in nutrition therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585036 | PMC |
http://dx.doi.org/10.3390/jcm10214859 | DOI Listing |
J Nanobiotechnology
January 2025
Department of Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, China.
Early diagnosis of pancreatic ductal adenocarcinoma (PDAC) is challenging because of its depth, which often leads to misdiagnosis during ultrasound examinations. The unique PDAC tumor microenvironment (TME) is characterized by significant fibrous tissue growth, and high interstitial pressure hinders drug penetration into tumors. Additionally, hypoxia and immune suppression within the tumor contribute to poor responses to radiotherapy and chemotherapy, ultimately leading to an unfavorable prognosis.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).
View Article and Find Full Text PDFMolecules
January 2025
Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China.
MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read out the generated strain, thereby obtaining the targeted acoustic signal's information, such as its intensity, direction, and distribution. Due to their advantages in miniaturization, low power consumption, high precision, high consistency, high repeatability, high reliability, and ease of integration, MEMS acoustic sensors are widely applied in many areas, such as consumer electronics, industrial perception, military equipment, and health monitoring.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey.
Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!