Alzheimer's disease (AD) is a complex disease that is mediated by numerous factors and manifests in various forms. A systems biology approach to studying AD involves analyses of various body systems, biological scales, environmental elements, and clinical outcomes to understand the genotype to phenotype relationship that potentially drives AD development. Currently, there are many research investigations probing how modifiable and nonmodifiable factors impact AD symptom presentation. This review specifically focuses on how imaging modalities can be integrated into systems biology approaches using model mouse populations to link brain level functional and structural changes to disease onset and progression. Combining imaging and omics data promotes the classification of AD into subtypes and paves the way for precision medicine solutions to prevent and treat AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112395PMC
http://dx.doi.org/10.1016/j.nbd.2021.105558DOI Listing

Publication Analysis

Top Keywords

systems biology
12
precision medicine
8
biology approaches
8
alzheimer's disease
8
pursuit precision
4
systems
4
medicine systems
4
approaches alzheimer's
4
disease
4
disease mouse
4

Similar Publications

Valine Restriction Extends Survival in a Drosophila Model of Short-Chain Enoyl-CoA Hydratase 1 (ECHS1) Deficiency.

J Inherit Metab Dis

January 2025

Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.

Short-chain enoyl-CoA hydratase 1 deficiency (ECHS1D) is a rare genetic disorder caused by biallelic pathogenic variants in the ECHS1 gene. ECHS1D is characterised by severe neurological and physical impairment that often leads to childhood mortality. Therapies such as protein and single nutrient-restricted diets show poor efficacy, whereas the development of new treatments is hindered by the low prevalence of the disorder and a lack of model systems for treatment testing.

View Article and Find Full Text PDF

The COVID-19 pandemic forced a societal shift from in-person to virtual activities, including scientific conferences. As society navigates a "new normal," the question arises as to the advantages and disadvantages of these alternative modalities. We introduce two new comprehensive datasets enabling direct comparison between virtual and in-person conferences: the first, from a series of nine small conferences, encompasses over 12,000 pairs of potential scientific collaborators across five virtual and four in-person meetings on a range of scientific topics; the expressed goal of these conferences is to create novel collaborations.

View Article and Find Full Text PDF

A novel open-source cultivation system helps establish the first full cycle chemosynthetic symbiosis model system involving the giant ciliate .

Front Microbiol

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.

Symbiotic interactions drive species evolution, with nutritional symbioses playing vital roles across ecosystems. Chemosynthetic symbioses are globally distributed and ecologically significant, yet the lack of model systems has hindered research progress. The giant ciliate and its sulfur-oxidizing symbionts represent the only known chemosynthetic symbiosis with a short life span that has been transiently cultivated in the laboratory.

View Article and Find Full Text PDF

Peatlands are invaluable but threatened ecosystems that store huge amounts of organic carbon globally and emit the greenhouse gasses carbon dioxide (CO) and methane (CH). Trophic interactions of microbial groups essential for methanogenesis are poorly understood in such systems, despite their importance. Thus, the present study aimed at unraveling trophic interactions between fermenters and methanogens in a nitrogen-limited, subarctic, pH-neutral fen.

View Article and Find Full Text PDF

Understanding communication among microorganisms through the array of signal molecules and establishing controlled signal transfer between different species is a major goal of the future of biotechnology, and controlled multispecies bioreactor cultivations will open a wide range of applications. In this study, we used two quorum-sensing peptides from - namely, the competence and sporulation factor (CSF) and (PhrF)-to establish a controlled interkingdom communication system between prokaryotes and eukaryotes. For this purpose, we engineered as a reporter capable of detecting the CSF and PhrF peptides heterologously produced by the yeast .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!