Cadmium (Cd) is a highly toxic environmental pollutant, leading to the occurrence and development of multiple neurological diseases. γ-glutamylcysteine (γ-GC) is a dipeptide formed by the condensation of l-glutamic acid and l-cysteine, which has antioxidant, anti-inflammatory, and chelating properties. The purpose of this study is to investigate the effect of γ-GC on Cd-induced apoptosis in PC12 cells. PC12 cells were pretreated with or without γ-GC (2 mM or 4 mM) for 2 h and exposed to Cd (10 μM) for 12 h, and survival, apoptosis, and oxidative stress of PC12 cells were detected after different treatments. The results showed that γ-GC significantly inhibited cell viability reduction, apoptosis, and depolarization of mitochondrial transmembrane potential in Cd-treated PC12 cells, as indicated by CCK-8 assay, flow cytometry, TUNEL staining, and JC-1 detection. Western blot showed that γ-GC down-regulated the ratio of Bax/Bcl-2 and the protein levels of cytosolic cytopigment c, cleaved-caspase-9, cleaved-caspase-3, and cleaved-PARP. Mechanistically, γ-GC suppressed Cd-induced ROS production, MDA accumulation, and GSH depletion, and increased the activity of antioxidant enzymes. Cd-induced activation of MAPK and PI3K/Akt signaling pathways were inhibited by γ-GC treatment, while sustained phosphorylation of JNK, p38, or Akt reversed anti-apoptotic effects of γ-GC. These results suggested that γ-GC inhibited Cd-induced apoptosis in PC12 cells through decreasing oxidative stress and inhibiting the activation of MAPK and PI3K/Akt signaling pathways. γ-GC could be used as a potential protective agent against Cd neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2021.153029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!