A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel methodology for identification and quantification of microplastics in biological samples. | LitMetric

Novel methodology for identification and quantification of microplastics in biological samples.

Environ Pollut

Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona 1826, 08034, Barcelona, Spain.

Published: January 2022

Currently, the evidence of the ingestion of microplastics (MPs) by organisms or the accumulation in different environmental compartments has been achieved using several methodological procedures. However, its uses have not been standardized across studies. In this study, we aim to assess and validate a protocol that can be useful for optimizing the identification and quantification procedures of polyethylene microplastics (PE MPs) in biological samples. Initially, considering that numerous studies filter samples previously digested in cellulosic membranes for isolation and analysis of MPs, we evaluated whether washing these membranes with different reagents could contribute to the complete detachment of particles, as well as to their dispersion in the obtained solutions. However, none of the tested reagents (dimethyl sulfoxide, acetone, ethyl alcohol and chloroform), including purified water, was able to completely remove the MPs adhered to the membranes or facilitate their dispersion in the solutions. On the other hand, we observed that the digestion of the membranes by acetonitrile constituted a procedure that prevents the loss of particles due to adherence, in addition to promoting good dispersion of MPs. Subsequently, we evaluated the use of Neubauer chambers for the quantification of MPs, having observed a good recovery rate (>92%) and results with insignificant variation, in PE MPs solutions with different concentrations (0.15; 0.075 and 0.0375 mg/mL). Ultimately, the validation of the proposed procedures took place from the evaluation of the accumulation of PE MPs in Astyanax spp. juveniles, having demonstrated the efficiency and sensitivity of the method proposed for this purpose. Subsequently, our study provides a methodological alternative that can optimize MPs quantifications in biological samples and reduce the generation of biased or unreliable results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.118466DOI Listing

Publication Analysis

Top Keywords

biological samples
12
mps
9
identification quantification
8
microplastics mps
8
dispersion solutions
8
novel methodology
4
methodology identification
4
quantification microplastics
4
microplastics biological
4
samples
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!