In all vertebrates, thyroid hormone (TH) is critical for normal growth and development. In amphibians, corticosterone (CORT) has no action to advance development by itself but can accelerate development induced by TH. CORT accomplishes this acceleration by increasing tissue sensitivity and responsivity to TH. However, the receptor through which CORT acts to affect TH signaling is not known. To examine the role of the glucocorticoid receptor (GR), GR knockout tadpoles and wild-type tadpoles treated with the GR antagonist, RU486, were exposed to exogenous TH and/or CORT then assayed for gene expression and morphology. We found that levels of the response genes klf9 and thrb induced by TH and associated changes in morphology were decreased in GR knockout tadpoles compared to wild-type tadpoles, suggesting that GR signaling contributes to tissue responsivity to TH. To directly examine the role of GR in TH signaling, we co-treated tadpoles with TH and CORT and found that the TH response gene, thrb, was induced significantly beyond the level induced by TH alone in wild-type tadpoles but not in GR knockout tadpoles or wild-type tadpoles treated with RU486. Similarly, tail and gill resorption was greater in tadpoles treated with CORT plus TH compared to TH alone in wild-type tadpoles but not in tadpoles with impaired GR signaling. Surprisingly, even though GR knockout tadpoles die at metamorphosis, treatment with TH alone enabled their survival. These results demonstrate that signaling through GR is responsible for enhancing TH signaling and is essential for the completion of metamorphosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygcen.2021.113942 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.
View Article and Find Full Text PDFTransgenic Res
January 2025
Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
The TIRAP protein is an adaptor protein in TLR signaling which links TLR2 and TLR4 to the adaptor protein Myd88. The transcriptomic profiles of zebrafish larvae from a , and mutant and the corresponding wild type controls under unchallenged developmental conditions revealed a specific involvement of in calcium homeostasis and myosin regulation. Metabolomic profiling showed that the mutation results in lower glucose levels, whereas a mutation leads to higher glucose levels.
View Article and Find Full Text PDFTransgenic Res
December 2024
The Sericultural Research Institute of Hunan Province, Changsha, 410127, Hunan, China.
Bombyx mori nuclear polyhedrosis, caused by B. mori nucleopolyhedrovirus (BmNPV), threatens sericulture seriously. To explore strategies for controlling it, the UDP glycosyltransferase gene UGT41A3 (BmUGT41A3) was targeted.
View Article and Find Full Text PDFBMC Genomics
December 2024
Section On Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
Background: Thyroid hormone (T3) has an inhibitory effect on tissue/organ regeneration. It is still elusive how T3 regulates this process. It is well established that the developmental effects of T3 are primarily mediated through transcriptional regulation by thyroid hormone receptors (TRs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!