Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent studies have revealed the physiological roles of glutamate receptor-like channels (GLRs) in Arabidopsis; however, the functions of GLRs in rice remain largely unknown. Here, we show that knockout of OsGLR3.4 in rice leads to brassinosteroid (BR)-regulated growth defects and reduced BR sensitivity. Electrophoretic mobility shift assays and transient transactivation assays indicated that OsGLR3.4 is the downstream target of OsBZR1. Further, agonist profile assays showed that multiple amino acids can trigger transient Ca influx in an OsGLR3.4-dependent manner, indicating that OsGLR3.4 is a Ca -permeable channel. Meanwhile, the study of internode cells demonstrated that OsGLR3.4-mediated Ca flux is required for actin filament organization and vesicle trafficking. Following root injury, the triggering of both slow wave potentials (SWPs) in leaves and the jasmonic acid (JA) response are impaired in osglr3.4 mutants, indicating that OsGLR3.4 is required for root-to-shoot systemic wound signaling in rice. Brassinosteroid treatment enhanced SWPs and OsJAZ8 expression in root-wounded plants, suggesting that BR signaling synergistically regulates the OsGLR3.4-mediated systemic wound response. In summary, this article describes a mechanism of OsGLR3.4-mediated cell elongation and long-distance systemic wound signaling in plants and provides new insights into the contribution of GLRs to plant growth and responses to mechanical wounding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.17859 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!