AI Article Synopsis

  • * DNA double strand breaks play a crucial role in this switching process, but the specific locations of these breaks are not fully understood.
  • * Research using cell lines demonstrated that breaks in repetitive DNA regions do not effectively trigger VSG switching, revealing that the break position affects gene expression and the DNA repair response, influencing how antigenic variation occurs in these parasites.

Article Abstract

Antigenic variation is an immune evasion strategy used by Trypanosoma brucei that results in the periodic exchange of the surface protein coat. This process is facilitated by the movement of variant surface glycoprotein genes in or out of a specialized locus known as bloodstream form expression site by homologous recombination, facilitated by blocks of repetitive sequence known as the 70-bp repeats, that provide homology for gene conversion events. DNA double strand breaks are potent drivers of antigenic variation, however where these breaks must fall to elicit a switch is not well understood. To understand how the position of a break influences antigenic variation we established a series of cell lines to study the effect of an I-SceI meganuclease break in the active expression site. We found that a DNA break within repetitive regions is not productive for VSG switching, and show that the break position leads to a distinct gene expression profile and DNA repair response which dictates how antigenic variation proceeds in African trypanosomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612549PMC
http://dx.doi.org/10.1371/journal.ppat.1010038DOI Listing

Publication Analysis

Top Keywords

antigenic variation
16
dna double
8
double strand
8
break position
8
position leads
8
leads distinct
8
distinct gene
8
gene expression
8
vsg switching
8
expression site
8

Similar Publications

Foot-and-mouth disease (FMD) continues to pose a significant threat in Egypt, necessitating thorough analyses of FMD virus (FMDV) outbreaks. This study analyzed 144 suspected FMD cases across 52 animal collections during the years 2017-2018 and 2022. Recurrent FMD outbreaks in vaccinated dairy cattle were investigated.

View Article and Find Full Text PDF

The human gut microbiome within the gastrointestinal tract continuously adapts to variations in diet, medications, and host physiology. A central strategy for genetic adaptation is epigenetic phase variation (ePV) mediated by bacterial DNA methylation, which can regulate gene expression, enhance clonal heterogeneity, and enable a single bacterial strain to exhibit variable phenotypic states. Genome-wide and site-specific ePV have been well characterized in human pathogens' antigenic variation and virulence factor production.

View Article and Find Full Text PDF

Unlabelled: The spirochete causes Lyme disease. In some patients, an excessive, dysregulated proinflammatory immune response can develop in joints leading to persistent arthritis. In such patients, persistence of antigenic peptidoglycan (PG ) fragments within joint tissues may contribute to the immunopatho-genesis, even after appropriate antibiotic treatment.

View Article and Find Full Text PDF

Phylogenetic and molecular analysis of hemagglutinin gene and Fsp-coding region of canine distemper virus: Insight into novel vaccine development.

Comp Immunol Microbiol Infect Dis

January 2025

Graduated Student in doctor of Veterinary Medicine, Faculty of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran. Electronic address:

Canine distemper virus (CDV) causes a highly contagious and lethal disease in a vast range of carnivorous and non-carnivorous species. The study aimed to genetically investigate the hemagglutinin (H) gene and Fsp-coding region of CDV isolates from vaccinated dogs. Phylogenetic analysis of the H gene and Fsp-coding region showed that our viruses belonged to the Arctic-like lineage which was distinct from two commonly used vaccine strains (America-1 lineage strains) in Iran.

View Article and Find Full Text PDF

Variable surface antigen expression, virulence, and persistent infection by malaria parasites.

Microbiol Mol Biol Rev

January 2025

Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.

SUMMARYThe human malaria parasite is known for its ability to maintain lengthy infections that can extend for over a year. This property is derived from the parasite's capacity to continuously alter the antigens expressed on the surface of the infected red blood cell, thereby avoiding antibody recognition and immune destruction. The primary target of the immune system is an antigen called PfEMP1 that serves as a cell surface receptor and enables infected cells to adhere to the vascular endothelium and thus avoid filtration by the spleen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!