A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic diversity, antifungal evaluation and molecular docking studies of Cu-chitosan nanoparticles as prospective stem rust inhibitor candidates among some Egyptian wheat genotypes. | LitMetric

Wheat has a remarkable importance among cereals worldwide. Wheat stem and leaf rust constitute the main threats that destructively influence grain quality and yield production. Pursuing resistant cultivars and developing new genotypes including resistance genes is believed to be the most effective tool to overcome these challenges. This study is the first to use molecular markers to evaluate the genetic diversity of eighteen Egyptian wheat genotypes. Moreover, the molecular docking analysis was also used to assess the Cu-chitosan nanoparticle (CuChNp) treatment and its mode of action in disease control management. The tested genotypes were categorized into two main cluster groups depending on the similarity matrix, i.e the most resistant and susceptible genotypes to stem and leaf rust races. The results of SCoT primers revealed 140 polymorphic and 5 monomorphic bands with 97% polymorphism. While 121 polymorphic and 74 monomorphic bands were scored for SRAP primers (99% polymorphism). The genotypes Sakha 94, Sakha 95, Beni Sweif 4, Beni Sweif 7, Sohag 4 and Sohag 5 were resistant, while Giza 160 was highly susceptible to all stem rust races at the seedling stage. However, in the adult stage, the 18 genotypes were evaluated for stem and leaf rust-resistant in two different locations, i.e. Giza and Sids. In this investigation, for the first time, the activity of CuChNp was studied and shown to have the potential to inhibit stem and leaf rust in studied Egyptian wheat genotypes. The Spraying Cu-chitosan nanoparticles showed that the incubation and latent periods were increased in treated plants of the tested genotypes. Molecular modeling revealed their activity against the stem and leaf rust development. The SRAP and SCoT markers were highly useful tools for the classification of the tested wheat genotypes, although they displayed high similarities at the morphological stage. However, Cu-chitosan nanoparticles have a critical and effective role in stem and leaf rust disease control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589204PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257959PLOS

Publication Analysis

Top Keywords

stem leaf
24
leaf rust
20
wheat genotypes
16
cu-chitosan nanoparticles
12
egyptian wheat
12
genotypes
10
genetic diversity
8
molecular docking
8
stem
8
stem rust
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!