We propose a unified game-theoretical framework to perform classification and conditional image generation given limited supervision. It is formulated as a three-player minimax game consisting of a generator, a classifier and a discriminator, and therefore is referred to as Triple Generative Adversarial Network (Triple-GAN). The generator and the classifier characterize the conditional distributions between images and labels to perform conditional generation and classification, respectively. The discriminator solely focuses on identifying fake image-label pairs. Theoretically, the three-player formulation guarantees consistency. Namely, under a nonparametric assumption, the unique equilibrium of the game is that the distributions characterized by the generator and the classifier converge to the data distribution. As a byproduct of the three-player formulation, Triple-GAN is flexible to incorporate different semi-supervised classifiers and GAN architectures. We evaluate Triple-GAN in two challenging settings, namely, semi-supervised learning and the extremely low data regime. In both settings, Triple-GAN can achieve excellent classification results and generate meaningful samples in a specific class simultaneously. In particular, using a commonly adopted 13-layer CNN classifier, Triple-GAN outperforms extensive semi-supervised learning methods substantially on several benchmarks no matter data augmentation is applied or not.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2021.3127558 | DOI Listing |
J Eval Clin Pract
February 2025
Instituto Mexicano del Seguro Social, IMSS Hospital General de Zona Número 17, Monterrey, Nuevo León, México.
Introduction: Rheumatoid arthritis (RA) is a progressive autoimmune inflammatory disease. According to the European League Against Rheumatism (EULAR), the stages of RA progression include pre-RA, preclinical RA, inflammatory arthralgia, arthralgia with positive antibodies, arthralgia suspected of progressing to RA, undifferentiated arthritis and finally established RA. According to the Community Oriented Program for Control of Rheumatic Diseases (COPCORD), the prevalence of RA in Mexico is 1.
View Article and Find Full Text PDFSci Rep
December 2024
Hepatobiliary and Pancreatic Medical Treatment Center, People's Hospital of Xinjiang Uygur, Autonomous Region, Tianchi road, Urumqi, 830011, China.
With the advancement of precise hepatobiliary surgery concepts, the diagnostic and therapeutic approaches for hepatic echinococcosis have undergone significant transformations. However, whether these changes have correspondingly improved patient outcomes remains unclear. A retrospective analysis of these changes will provide crucial guidance for the prevention and treatment of hepatic echinococcosis.
View Article and Find Full Text PDFSci Rep
December 2024
School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.
Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.
View Article and Find Full Text PDFBehav Res Methods
December 2024
Department of Education Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong.
The absence of explicit word boundaries is a distinctive characteristic of Chinese script, setting it apart from most alphabetic scripts, leading to word boundary disagreement among readers. Previous studies have examined how this feature may influence reading performance. However, further investigations are required to generate more ecologically valid and generalizable findings.
View Article and Find Full Text PDFSci Rep
December 2024
College of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China.
The scattering of tiny particles in the atmosphere causes a haze effect on remote sensing images captured by satellites and similar devices, significantly disrupting subsequent image recognition and classification. A generative adversarial network named TRPC-GAN with texture recovery and physical constraints is proposed to mitigate this impact. This network not only effectively removes haze but also better preserves the texture information of the original remote sensing image, thereby enhancing the visual quality of the dehazed image.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!