A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrabroadband Entangled Photons on a Nanophotonic Chip. | LitMetric

Ultrabroadband Entangled Photons on a Nanophotonic Chip.

Phys Rev Lett

Institute of Optics, University of Rochester, Rochester, New York 14627, USA.

Published: October 2021

The development of quantum technologies on nanophotonic platforms has seen momentous progress in the past decade. Despite that, a demonstration of time-frequency entanglement over a broad spectral width is still lacking. Here we present an efficient source of ultrabroadband entangled photon pairs on a periodically poled lithium niobate nanophotonic waveguide. Employing dispersion engineering, we demonstrate a record-high 100 THz (1.2  μm-2  μm) generation bandwidth with a high efficiency of 13  GHz/mW and excellent noise performance with the coincidence-to-accidental ratio exceeding 10^{5}. We also measure strong time-frequency entanglement with over 98% two-photon interference visibility.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.183601DOI Listing

Publication Analysis

Top Keywords

ultrabroadband entangled
8
time-frequency entanglement
8
entangled photons
4
photons nanophotonic
4
nanophotonic chip
4
chip development
4
development quantum
4
quantum technologies
4
technologies nanophotonic
4
nanophotonic platforms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!