Long-Time Memory and Ternary Logic Gate Using a Multistable Cavity Magnonic System.

Phys Rev Lett

Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China.

Published: October 2021

Multistability is an extraordinary nonlinear property of dynamical systems and can be explored to implement memory and switches. Here we experimentally realize the tristability in a three-mode cavity magnonic system with Kerr nonlinearity. The three stable states in the tristable region correspond to the stable solutions of the frequency shift of the cavity magnon polariton under specific driving conditions. We find that the system staying in which stable state depends on the history experienced by the system, and this state can be harnessed to store the history information. In our experiment, the memory time can reach as long as 5.11 s. Moreover, we demonstrate the ternary logic gate with good on-off characteristics using this multistable hybrid system. Our new findings pave a way towards cavity magnonics-based information storage and processing.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.183202DOI Listing

Publication Analysis

Top Keywords

ternary logic
8
logic gate
8
cavity magnonic
8
magnonic system
8
system
5
long-time memory
4
memory ternary
4
gate multistable
4
cavity
4
multistable cavity
4

Similar Publications

This article describes an optically adjustable, dual complementary molecular TRANSFER and COMPLEMENT logic gate as well as an extremely rare design of excitation-modulated logic systems using a pyrene coupled bis(indolyl)methane derivative (1) in Brij-58 micelles, triggered by different chemical stimuli. We have looked into the optical response of the probe molecule towards variety of analytes, including OH, CN, Hg, EDTA ., at various excitation channels, in order to achieve this goal.

View Article and Find Full Text PDF

The quantitative detection of HO is of great significance for preventing the occurrence of diseases. In this work, an electrochemical biosensor for detecting HO was constructed through a step-by-step modification method. The PDEA-HRP/MXene/PG biosensor (PDEA = poly(N,N-dimethyl acrylamide), HRP = horseradish peroxidase, PG = pyrolytic graphite) was prepared with two-dimensional metal carbide (MXene) nano materials as the inner layer and PDEA-HRP hydrogel as the outer layer for the detection of HO.

View Article and Find Full Text PDF

Components needed in Artificial Intelligence with a higher information capacity are critically needed and have garnered significant attention at the forefront of information technology. This study utilizes solution-processed zinc-tin oxide (ZTO) thin-film phototransistors and modulates the values of , which allows for the regulation of electron trapping/detrapping at the ZTO/SiO interface. By coupling the excited photonic carrier and electronic trapping, logic gates such as "AND," "OR," "NAND," and "NOR" can be achieved.

View Article and Find Full Text PDF

Negative differential transconductance (NDT) devices have emerged as promising candidates for multivalued logic computing, and particularly for ternary logic systems. To enable computation of any ternary operation, it is essential to have a functionally complete set of ternary logic gates, which remains unrealized with current NDT technologies, posing a critical limitation for higher-level circuit design. Additionally, NDT devices typically rely on heterojunctions, complicating fabrication and impacting reliability due to the introduction of additional materials and interfaces.

View Article and Find Full Text PDF

2D electron gas field-effect transistors (2DEG-FETs), employing 2DEG formed at an interface of ultrathin (≈6 nm) AlO/ZnO heterostructure as the active channel, exhibit outstanding drive current (≈215 µA), subthreshold swing (≈132 mV dec), and field effect mobility (≈49.6 cm V s) with a high on/off current ratio of ≈10. It is demonstrated that the AlO upper layer in AlO/ZnO heterostructure acts as the source/drain resistance component during transistor operations, and the applied potential to the 2DEG channel is successfully modulated by AlO thickness variations so that the threshold voltage (V) is effectively tuned.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!