Many clever routes to Majorana fermions have been discovered by exploiting the interplay between superconductivity and band topology in metals and insulators. However, realizations in semimetals remain less explored. We ask, "Under what conditions do superconductor vortices in time-reversal symmetric Weyl semimetals-three-dimensional semimetals with only time-reversal symmetry-trap Majorana fermions on the surface?" If each constant-k_{z} plane, where z is the vortex axis, contains equal numbers of Weyl nodes of each chirality, we predict a generically gapped vortex and derive a topological invariant ν=±1 in terms of the Fermi arc structure that signals the presence or absence of surface Majorana fermions. In contrast, if certain constant-k_{z} planes contain a net chirality of Weyl nodes, the vortex is gapless. We analytically calculate ν within a perturbative scheme and provide numerical support with a lattice model. The criteria survive the presence of other bulk and surface bands and yield phase transitions between trivial, gapless, and topological vortices upon tilting the vortex. We propose Li(Fe_{0.91}Co_{0.09})As and Fe_{1+y}Se_{0.45}Te_{0.55} with broken inversion symmetry as candidates for realizing our proposals.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.187002DOI Listing

Publication Analysis

Top Keywords

majorana fermions
12
fermi arc
8
surface majorana
8
time-reversal symmetric
8
symmetric weyl
8
weyl nodes
8
arc criterion
4
criterion surface
4
majorana
4
majorana modes
4

Similar Publications

Majorana quasiparticles and topological phases in 3D active nematics.

Proc Natl Acad Sci U S A

December 2024

School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.

Quasiparticles are low-energy excitations with important roles in condensed matter physics. An intriguing example is provided by Majorana quasiparticles, which are equivalent to their antiparticles. Despite being implicated in neutrino oscillations and topological superconductivity, their experimental realizations remain very rare.

View Article and Find Full Text PDF

Chirality-Induced Majorana Zero Modes and Majorana Polarization.

ACS Nano

December 2024

School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.

Realizing Majorana Fermions has always been regarded as a crucial and formidable task in topological superconductors. In this work, we report a physical mechanism and a material platform for realizing Majorana zero modes (MZMs). This material platform consists of open circular helix molecule (CHM) proximity coupled with an -wave superconductor (under an external magnetic field) or interconnected-CHM chain coupled with a phase-bias -wave superconducting heterostructure (without any external magnetic field).

View Article and Find Full Text PDF

In the presence of an external magnetic field, the Kitaev model could host either gapped topological anyons or gapless Majorana fermions. In α-RuCl_{3}, the gapped and gapless cases are only separated by a 30° rotation of the in-plane magnetic field vector. The presence or absence of the spectral gap is key for understanding the thermal transport behavior in α-RuCl_{3}.

View Article and Find Full Text PDF

We theoretically study the transport signatures of unpaired Floquet Majorana fermions in the Josephson current of weakly linked, periodically driven topological superconductors. We obtain analytical expressions for the occupation of the Floquet Majorana fermions in the presence of weak coupling to thermal reservoirs, and show that, similar to undriven topological superconductors, for sufficiently low temperatures and large systems the Josephson current involving Floquet Majorana fermions is 4π-periodic in the phase difference across the junction and depends linearly on the coupling between superconductors. Moreover, unlike the static case, the amplitude of the Josephson current can be tuned by setting the unbiased chemical potential of the driven superconductors at multiple harmonics of the drive frequency.

View Article and Find Full Text PDF

Spin-helical Dirac Fermions at a doped topological insulator's boundaries can support Majorana quasiparticles when coupled with -wave superconductors, but in -doped systems, the requisite induced Cooper pairing in topological states is often buried at heterointerfaces or complicated by degenerate coupling with bulk conduction carriers. Rarely probed are -doped topological structures with nondegenerate Dirac and bulk valence bands at the Fermi level, which may foster long-range superconductivity without sacrificing Majorana physics. Using ultrahigh-resolution photoemission, we report proximity pairing with a large decay length in -doped topological SbTe on superconducting Nb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!