Cold and ultracold collisions are dominated by quantum effects, such as resonances, tunneling, and nonadiabatic transitions between different electronic states. Due to the extremely long de Broglie wavelength in such processes, quantum reactive scattering is most conveniently characterized using the time-independent close-coupling (TICC) methods. However, the TICC approach is difficult for systems with a large number of channels because of its steep numerical scaling laws. Here, a recently proposed quantum wave packet (WP) approach for solving adiabatic reactive scattering problems at low collision energies is extended to include nonadiabatic transitions. To impose the outgoing boundary conditions, the total scattering wavefunction is split into three parts, the interaction, the asymptotic, and the long-range regions. Each region is associated with a different set of basis functions, which could be optimized separately. In this way, an extremely long grid can be used to accommodate the characteristic long de Broglie wavelengths in the scattering coordinate. The better numerical scaling laws of the WP approach have the potential for handling larger nonadiabatic reactive systems at low temperatures in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.1c08105 | DOI Listing |
Langmuir
January 2025
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin RD, Shanghai 200234, China.
Ascorbyl tetraisopalmitate (VC-IP) is a novel form of ascorbic acid characterized by reduced water solubility due to complete acylation with palmitate. This study investigated the potential cosmetic application of VC-IP when encapsulated in lyotropic liquid crystal nanoparticles (VC-IP LCNPs) by using a high-pressure homogenization (HPH) method. The particle size, zeta potential, and polydispersity index (PDI) of the obtained VC-IP LCNPs were determined as 158.
View Article and Find Full Text PDFRSC Adv
January 2025
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
The oxidative dehydrogenation of propane with CO (CO-ODP) is a green industrial process for producing propene. Cerium oxide-supported platinum-based (Pt/CeO) catalysts exhibit remarkable reactivity toward propane and CO due to the unique delicate balance of C-H and C[double bond, length as m-dash]O bond activation. However, the simultaneous activation and cleavage of C-H, C-C, and C-O bonds on Pt/CeO-based catalysts may substantially impede the selective activation of C-H bonds during the CO-ODP process.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
The quantum transition state framework was developed to calculate the reaction path-resolved scattering matrix for atom-diatom reactions in hyperspherical (APH) coordinates. This approach allows for simply and directly calculating the reaction path-resolved scattering matrix, especially when the encircling reaction path is negligible. It could be used to determine the reactivities of specific pathways in a chemical reaction, providing insights into phenomena such as geometric phase effects.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
Universidad de los Andes, Biology, Cra 1 # 18A-10, Bogota, Cundinamarca, Colombia, 110121;
Pathogenic bacteria use Type 3 effector proteins to manipulate host defenses and alter metabolism to favor their survival and spread. The non-model bacterial pathogen pv. () causes devastating disease in cassava.
View Article and Find Full Text PDFACS Omega
January 2025
Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India.
Liver cancer is a prevalent and significant cause of death in humans. The use of novel biodegradable materials for various biomedical applications is being recently recommended as complementary as well as alternative solution for traditional chemotherapy. This study focuses on the synthesis of biodegradable nanocarriers [chitosan-coated poly(lactic acid) NPs (Cht-PLA NPs)] for the delivery of an anticancer drug vinblastine (Vbx) and to evaluate its therapeutic potential in human hepatocellular carcinoma (HepG2) cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!