AI Article Synopsis

  • Proton-gated ion channels, like hASIC1a, primarily allow Na+ ions to depolarize the postsynaptic membrane, but understanding how they select specific ions requires knowledge of their open pore structure, which is currently lacking.
  • Researchers modeled the open conformation of hASIC1a and analyzed mutations in the pore to identify structural determinants of ion selectivity, revealing two key constrictions formed by different channel components.
  • Functional analysis suggests that the GAS belt in the pore is flexible, with mutant channels that lose ion selectivity showing an enlarged GAS belt, supporting the "close-fit" hypothesis where the backbone of the GAS belt substitutes for part of the ion's hydration shell during ion passage.

Article Abstract

Proton-gated ion channels conduct mainly Na+ to induce postsynaptic membrane depolarization. Finding the determinants of ion selectivity requires knowledge of the pore structure in the open conformation, but such information is not yet available. Here, the open conformation of the hASIC1a channel was computationally modeled, and functional effects of pore mutations were analyzed in light of the predicted structures. The open pore structure shows two constrictions of similar diameter formed by the backbone of the GAS belt and, right beneath it, by the side chains of H28 from the reentrant loop. Models of nonselective mutant channels, but not those that maintain ion selectivity, predict enlargement of the GAS belt, suggesting that this motif is quite flexible and that the loss of stabilizing interactions in the central pore leads to changes in size/shape of the belt. Our results are consistent with the "close-fit" mechanism governing selectivity of hASIC1a, wherein the backbone of the GAS substitutes at least part of the hydration shell of a permeant ion to enable crossing the pore constriction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594623PMC
http://dx.doi.org/10.1085/jgp.202112978DOI Listing

Publication Analysis

Top Keywords

gas belt
12
ion selectivity
12
pore mutations
8
pore structure
8
open conformation
8
backbone gas
8
pore
6
ion
5
flexible gas
4
belt
4

Similar Publications

Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.

View Article and Find Full Text PDF

Nuclear power plant waste heat opens a window of next-generation desalination hybridization: a SOAR-based review.

Water Sci Technol

January 2025

Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University 31527, Egypt; Faculty of Engineering, Pharos University in Alexandria 21648, Alexandria, Egypt.

This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes.

View Article and Find Full Text PDF

Occupational exposures to respirable dusts and respirable crystalline silica (RCS) is well established as a health hazard in many industries including mining, construction, and oil and gas extraction. The U.S.

View Article and Find Full Text PDF

Since agriculture is a major source of greenhouse gas emissions, accurately calculating these emissions is essential for simultaneously addressing climate change and food security challenges. This paper explores the critical role of trade in transferring agricultural greenhouse gas (AGHG) emissions throughout global agricultural supply chains. We develop a detailed AGHG emission inventory with comprehensive coverage across a wide range of countries and emission sources at first.

View Article and Find Full Text PDF

Objective: The objective of this study is to synthesize and comprehensively characterize a novel iodine-containing coordination compound, di-aminopropionic acid hydrogen tri-iodide. This involves determining its structural, physicochemical, and thermal properties, as well as evaluating its antimicrobial activity against a range of bacterial strains, including multidrug-resistant pathogens. The aim is to explore the potential of this compound as a candidate for developing new antibacterial agents to address the challenge of antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!