The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed membrane protein consisting of ion channel and protein kinase domains. TRPM7 plays a fundamental role in the cellular uptake of divalent cations such as Zn, Mg, and Ca, and thus shapes cellular excitability, plasticity, and metabolic activity. The molecular appearance and operation of TRPM7 channels in native tissues have remained unresolved. Here, we investigated the subunit composition of endogenous TRPM7 channels in rodent brain by multi-epitope affinity purification and high-resolution quantitative mass spectrometry (MS) analysis. We found that native TRPM7 channels are high-molecular-weight multi-protein complexes that contain the putative metal transporter proteins CNNM1-4 and a small G-protein ADP-ribosylation factor-like protein 15 (ARL15). Heterologous reconstitution experiments confirmed the formation of TRPM7/CNNM/ARL15 ternary complexes and indicated that complex formation effectively and specifically impacts TRPM7 activity. These results open up new avenues towards a mechanistic understanding of the cellular regulation and function of TRPM7 channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8616561 | PMC |
http://dx.doi.org/10.7554/eLife.68544 | DOI Listing |
J Physiol Sci
January 2025
National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, 444-8787, Okazaki, Aichi, Japan; Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan; Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan; Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan; Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan. Electronic address:
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification.
View Article and Find Full Text PDFJ Taibah Univ Med Sci
February 2025
Department of Prosthodontics/Dental Material, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, India.
Objectives: Calcium ions (Ca) play crucial role in tooth development, particularly in maintaining enamel density during amelogenesis. Ameloblasts require specific proteins such as amelogenin, ameloblastin, enamelin, kallikrein, and collagen for enamel growth. Recent research has highlighted the importance of calcium and fluoride ions, as well as the TRPM7, STIM, and SOCE pathways, in regulating various stages of enamel formation.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Institute for Molecular Medicine, Health and Medical University Potsdam, Potsdam, Germany.
Ca and Mg are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca and Mg can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca and Mg from supplements is significantly lower than that from milk products.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
Preserving the balance of metabolic processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), is crucial for optimal vascular function and integrity. ECs are metabolically active and depend on aerobic glycolysis to efficiently produce energy for their essential functions, which include regulating vascular tone. Impaired EC metabolism is linked to endothelial damage, increased permeability and inflammation.
View Article and Find Full Text PDFInt Dent J
December 2024
Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand. Electronic address:
Objectives: Periodontal ligament stem cells (PDLSCs) are promising for regenerative therapies due to their self-renewal and multilineage differentiation, essential for periodontal tissue repair. Although magnesium plays a vital role in bone metabolism, its specific effects on PDLSCs and potential applications in regeneration are unclear. This study aimed to investigate the effects of magnesium chloride (MgCl₂) on the proliferation and osteogenic differentiation of human PDLSCs (hPDLSCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!