Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Most proteins perform their functions in cells. How the cellular environment modulates protein interactions is an important question. In this work, electrostatic interactions between protein charges were studied using in-cell nuclear magnetic resonance (NMR) spectroscopy. A total of eight charge pairs were introduced in protein GB3. Compared to the charge pair electrostatic interactions in a buffer, five charge pairs in cells displayed no apparent changes whereas three pairs had the interactions weakened by more than 70%. Further investigation suggests that the transfer free energy is responsible for the electrostatic interaction modulation. Both the transfer free energy of the folded state and that of the unfolded state can contribute to the cellular environmental effect on protein electrostatics, although the latter is generally larger (more negative) than the former. Our work highlights the importance of direct in-cell studies of protein interactions and thus protein function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c10154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!