Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cationic cell-penetrating peptides spontaneously associate with negatively charged oligonucleotides to form submicron nanoparticles, so-called polyplexes. Contact with cells leads to endosomal uptake of these nanoparticles. Oligonucleotide activity critically depends on endosomal release and finally dissociation of polyplexes. Fluorescence provides a highly powerful means to follow the spatial dynamics of oligonucleotide uptake, trafficking and decomplexation, in particular when combined with markers of subcellular compartments that enable a quantitative analysis of colocalization and thereby mapping of trafficking routes. In this chapter, we describe protocols for a highly defined formation of polyplexes. We then point out the use of fluorescent fusion proteins to identify subcellular trafficking compartments and image analysis protocols to obtain quantitative information on trafficking routes and endosomal release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1752-6_13 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!