An important aspect of understanding cancer biology is to connect the diverse repertoire of genotype-to-phenotype displays in individual specimens and ultimately resolve disease course outcome through informative datasets. A focus of cancer genomics has strived to provide predictive capabilities using genomic information to further inform therapeutic strategies. The advent of single-cell sequencing and analysis now provides a route to decipher high-resolution genomic diversity in individual samples and facilitate detailed understanding of clonal evolution in clinical research settings. In addition to generating high-throughput single-cell genomic SNV and CNV data, this protocol describes a new analytical ability that adds a second dimension which provides for interrogation of surface protein marker expression. The first immediate application of this technology is quite suitable to heme cancer cell studies. This multimodal approach allows for correlation of diverse genomic signatures to key phenotypic biomarkers such as immunophenotypes in leukemic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1771-7_12 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Neurology (Nerve-Muscle Unit), Reference Center for Neuromuscular Diseases "AOC," ALS Reference Center, University Hospitals of Bordeaux (Pellegrin Hospital), University of Bordeaux, Bordeaux, France.
Rationale: Locked-in syndrome (and its variant, completely locked-in state) generally has a high mortality rate in the acute setting; however, when induced by conditions such as acute inflammatory polyradiculoneuropathy, it may well be curable such that an attempt at cure should be systematically sought by clinicians.
Patient Concerns: A 52-year-old man presented with acute tetraparesia and areflexia, initially diagnosed as Guillain-Barré syndrome. Despite appropriate treatment, his condition deteriorated, evolving into a completely locked-in state.
Medicine (Baltimore)
January 2025
Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.
Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA.
Purpose: Fibroblast growth factor receptor 2 isoform IIIb (FGFR2b) protein overexpression is an emerging biomarker in gastric cancer and gastroesophageal junction cancer (GC). We assessed FGFR2b protein overexpression prevalence in nearly 3,800 tumor samples as part of the prescreening process for a global phase III study in patients with newly diagnosed advanced or metastatic GC.
Methods: As of June 28, 2024, 3,782 tumor samples from prescreened patients from 37 countries for the phase III FORTITUDE-101 trial (ClinicalTrials.
JCO Precis Oncol
January 2025
Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Purpose: To investigate whether hormone receptor-positive, human epidermal growth factor receptor 2-low (HR+HER2-low) versus HR+HER2-zero early breast cancers have distinct genomic and clinical characteristics.
Methods: This study included HR+, HER2-negative early breast cancers from patients enrolled in the phase III, randomized BIG 1-98 and SOFT clinical trials that had undergone tumor genomic sequencing. Tumors were classified HR+HER2-low if they had a centrally reviewed HER2 immunohistochemistry (IHC) score of 1+ or 2+ with negative in situ hybridization and HR+HER2-zero if they had an HER2 IHC score of 0.
Plant Physiol
December 2024
Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic.
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!