Mechanistic insight into sevoflurane-associated developmental neurotoxicity.

Cell Biol Toxicol

Day Surgery Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China, 730000.

Published: December 2022

With the development of technology, more infants receive general anesthesia for surgery, other interventions, or clinical examination at an early stage after birth. However, whether general anesthetics can affect the function and structure of the developing infant brain remains an important, complex, and controversial issue. Sevoflurane is the most-used anesthetic in infants, but this drug is potentially neurotoxic. Short or single exposure to sevoflurane has a weak effect on cognitive function, while long or repeated exposure to general anesthetics may cause cognitive dysfunction. This review focuses on the mechanisms by which sevoflurane exposure during development may induce long-lasting undesirable effects on the brain. We review neural cell death, neural cell damage, impaired assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects as important mechanisms for sevoflurane-induced developmental neurotoxicity. More advanced technologies and methods should be applied to determine the underlying mechanism(s) and guide prevention and treatment of sevoflurane-induced neurotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750936PMC
http://dx.doi.org/10.1007/s10565-021-09677-yDOI Listing

Publication Analysis

Top Keywords

developmental neurotoxicity
8
general anesthetics
8
neural cell
8
mechanistic insight
4
insight sevoflurane-associated
4
sevoflurane-associated developmental
4
neurotoxicity development
4
development technology
4
technology infants
4
infants receive
4

Similar Publications

Few of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment.

View Article and Find Full Text PDF

A primary rat neuron-astrocyte-microglia tri-culture model for studying mechanisms of neurotoxicity.

Front Toxicol

January 2025

Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States.

Primary cell cultures from rodent brain are widely used to investigate molecular and cellular mechanisms of neurotoxicity. To date, however, it has been challenging to reliably culture endogenous microglia in dissociated mixed cultures. This is a significant limitation of most neural cell models given the growing awareness of the importance of interactions between neurons, astrocytes and microglia in defining responses to neurotoxic exposures.

View Article and Find Full Text PDF

Neural progenitor cells (NPCs) are often used to study the subcellular mechanisms underlying differentiation into neurons in vitro. Works published to date have focused on the pathways that distinguish undifferentiated NPCs from mature neurons, neglecting the earlier and intermediate stages of this process. Current evidence suggests that mitochondria interaction with the ER is fundamental to a wide range of intracellular processes.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are persistent organic pollutants emitted during e-waste activities. Upon release into the environment, PCBs can pose harmful effects to the humans and environment. The present review focused on the effects of PCBs on cell proliferation, apoptosis, functional and developmental toxicity and potential possible molecular mechanisms upon cells and stem cells.

View Article and Find Full Text PDF

Background: Cerebral palsy (CP) is the most common permanent neuromotor disorder diagnosed in childhood. Although most cases have unknown etiology, emerging evidence suggests environmental risk factors of CP.

Objectives: We investigated whether ambient toxic air contaminants (TACs) in the maternal residential area during pregnancy, specifically volatile organic compounds (VOCs) and metals, were associated with offspring CP risk in California.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!