The objective of the present study was to develop microballoons aided gastro-retentive floating tablets of baclofen, a skeletal muscle relaxant with a low elimination half-life of ~ 3.5 h. Baclofen floating tablet was prepared to offer convenience by designing a tablet that would float in the stomach for a prolonged period and allow controlled drug release to enable once-a-day administration. Ethylcellulose microballoons (ECMBs) prepared by pseudo emulsion solvent diffusion method were employed as floating aid. The ECMBs were spherical with a size of 446.71 µm and a circularity index of 0.995. Buoyancy of 98.90 percent and good flowability reflected by an angle of repose of 23° suggested the feasibility of preparing floating tablets by direct compression. Directly compressed baclofen floating tablets comprised ECMBs, HPMC-K15M, and hydroxyl ethylcellulose as independent variables in the Box-Behnken design, however, performance characteristics of tablets such as in vitro drug release, floating lag time, and swelling index were selected as the dependent variables. Among the variables, ECMBs played a critical role in ensuring buoyancy. However, HPMC-K15M significantly influenced in vitro drug release. The optimized batch displayed Hickson-Crowell kinetics and exhibited a similar drug release profile as a marketed once-a-day formulation (f, 91.03). Furthermore, optimized tablets showed a swelling index of > 300, floating lag time < 3 s, and total floating time > 24 h. Microballoons assisted floating tablets exhibited great promise for assured gastric retention of tablets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-021-02139-y | DOI Listing |
Int J Pharm
January 2025
Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea. Electronic address:
Bethanechol chloride (BTC), a quaternary ammonium compound used in bladder dysfunction treatment, requires challenges in developing optimal oral dosage forms due to its high water-solubility, short half-life, rapid elimination and four times a day administration. The aim of this study was to develop optimal BTC-loaded oral dosage forms that could provide both rapid onset and sustained therapeutic effects while reducing the frequency of conventional four-times-daily dosing (Mytonin® tablets). Four different BTC-loaded oral dosage forms were designed including gastro-retentive tablet (GRT), controlled-release tablet (CRT), bilayer tablet (BLT), and tablet-in-tablet (TIT).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.
Int J Biol Macromol
January 2025
Chemistry Department, Faculty of Chemistry, Cairo University, Giza 12613, Egypt. Electronic address:
Gastro retentive drug delivery systems (GRDDS) have gained immense popularity as they reduce dosing frequency, improve bioavailability, and enhance patient compliance. Herein, a plant-based, controlled swelling, and pH-sensitive GRDDS based on Aloe vera hydrogel and cellulose was developed for the sustained release of levofloxacin (LEVO). The properties of five various floating tablet formulations including dynamic swelling, pH-responsiveness, hardness, friability, drug release, and buoyant time were evaluated.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India. Electronic address:
Nanotheranostics
November 2024
Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!