Conceiving "nothing" as a numerical value zero is considered a sophisticated numerical capability that humans share with cognitively advanced animals. We demonstrate that representation of zero spontaneously emerges in a deep learning neural network without any number training. As a signature of numerical quantity representation, and similar to real neurons from animals, numerosity zero network units show maximum activity to empty sets and a gradual decrease in activity with increasing countable numerosities. This indicates that the network spontaneously ordered numerosity zero as the smallest numerical value along the number line. Removal of empty-set network units caused specific deficits in the network's judgment of numerosity zero, thus reflecting these units' functional relevance. These findings suggest that processing visual information is sufficient for a visual number sense that includes zero to emerge and explains why cognitively advanced animals with whom we share a nonverbal number system exhibit rudiments of numerosity zero.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571726 | PMC |
http://dx.doi.org/10.1016/j.isci.2021.103301 | DOI Listing |
CNS Neurosci Ther
January 2025
Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
Objectives: Parkinson's disease (PD) is characterized by olfactory dysfunction (OD) and cognitive deficits at its early stages, yet the link between OD and cognitive deficits is also not well-understood. This study aims to examine the changes in the olfactory network associated with OD and their relationship with cognitive function in de novo PD patients.
Methods: A total of 116 drug-naïve PD patients and 51 healthy controls (HCs) were recruited for this study.
Unlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.
View Article and Find Full Text PDFAnimals capable of complex behaviors tend to have more distinct brain areas than simpler organisms, and artificial networks that perform many tasks tend to self-organize into modules (1-3). This suggests that different brain areas serve distinct functions supporting complex behavior. However, a common observation is that essentially anything that an animal senses, knows, or does can be decoded from neural activity in any brain area (4-6).
View Article and Find Full Text PDFTaiwan J Ophthalmol
November 2024
Sirindhorn International Institute of Technology, Thammasat University, Bangkok, Thailand.
Recent advances of artificial intelligence (AI) in retinal imaging found its application in two major categories: discriminative and generative AI. For discriminative tasks, conventional convolutional neural networks (CNNs) are still major AI techniques. Vision transformers (ViT), inspired by the transformer architecture in natural language processing, has emerged as useful techniques for discriminating retinal images.
View Article and Find Full Text PDFBio Protoc
January 2025
Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark.
Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!