Similar Publications

Retinal Changes After Acute and Late Optic Neuritis in Aquaporin-4 Antibody Seropositive NMOSD.

J Neuroophthalmol

December 2024

Experimental and Clinical Research Center (FCO, HGZ, SM, CB, ESA, CC, FP, AUB), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Clinical Research Center (FCO, HGZ, SM, CB, ESA, CC, FP, AUB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Neurology (AJG), University of California San Francisco, San Francisco, California; Neurology (RM, ACC), Multiple Sclerosis, Myelin Disorders and Neuroinflammation Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, France; Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (ACC), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Experimental Neurophysiology Unit (LL, MP, M. Radaelli), Institute of Experimental Neurology (INSPE) Scientific Institute, Hospital San Raffaele and University Vita-Salute San Raffaele, Milan, Italy; Hospital Clinic of Barcelona-Institut d'Investigacions (PV, BS-D, EHM-L), Biomèdiques August Pi Sunyer, (IDIBAPS), Barcelona, Spain; CIEM MS Research Center (MAL-P, MAF), University of Minas Gerais, Medical School, Belo Horizonte, Brazil; Department of Neurology (OA, M. Ringelstein, PA), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Neurology (M. Ringelstein), Centre for Neurology and Neuropsychiatry, LVR Klinikum, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Medicine (MRY), Harbor-University of California at Los Angeles (UCLA) Medical Center, and Lundquist Institute for Biomedical Innovation, Torrance, California; Department of Medicine (MRY), David Geffen School of Medicine at UCLA, Los Angeles, California; Departments of Ophthalmology and Visual Sciences (TJS), Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan; Division of Metabolism, Endocrine and Diabetes (TJS, LC), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Department of Neurology (FP), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; and Department of Neurology (AUB), University of California, Irvine, California.

View Article and Find Full Text PDF

Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release.

Discov Nano

January 2025

National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.

Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).

View Article and Find Full Text PDF

Pattern architected soft magnetic actuation.

Soft Matter

January 2025

Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.

Bioinspired shape-morphing soft magnetic actuators have potential applications in medicine, robotics, and engineering due to their soft body, untethered control, and infinite degrees of freedom. The shape programming of the soft magnetic actuators (consisting of soft ferromagnetic CI particles in a soft matrix) is an involved task, as it requires a moulding process severely limiting the capability to program complex shapes. The current study explores a shape programming technique that architects the particle pattern configuration in the actuator, mimicking the pattern found in the mould-programmed actuator, thereby eliminating the need for a mould and providing a greater capability of programming complex shapes.

View Article and Find Full Text PDF

A review on hydroxyapatite fabrication: from powders to additive manufactured scaffolds.

Biomater Sci

January 2025

Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.

Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications.

View Article and Find Full Text PDF

There has been considerable interest in the recent advances in synthetic micro/nanomotors in diverse biofluids due to their potential biomedical applications. However, the propulsion of existing micro/nanomotor platforms for delivery in the gastrointestinal (GI) tract is inefficient. Herein, we present a magnetically and chemically actuated micromotor-tableted pill that can be actively retained in the GI tract .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!