Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hexafluoropropylene oxide dimer acid, also known as GenX, is a poly- and perfluoroalkyl substance (PFAS). PFASs are nonvolatile synthetic substances that can be readily disseminated into the environment during processing and use, making them easy to implement in the soil, drinking water, and air. Compared to other PFASs, GenX has a comparatively short carbon chain length and is expected to have a lower tendency to accumulate in humans; therefore, GenX has recently been used as a substitute to other PFASs. However, the mechanisms underlying GenX action and intoxication in humans remains unclear. In this study, the apoptotic capacity of GenX in human liver cells was investigated. When representative human-derived liver cells (HepG2 cells) were treated with GenX for 12 h, cell viability was reduced, and apoptosis was greatly increased. In addition, GenX increased the generation of intracellular reactive oxygen species (ROS), indicating the induction of oxidative stress in a dose-dependent manner. GenX treatment increased the expression of major apoptosis-related genes relative to the untreated control group. This research indicates that GenX causes apoptosis through ROS mediation in HepG2 cells, which may expand our knowledge of the molecular and toxicological mechanisms of GenX.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571496 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e08272 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!