Sepsis, defined as infection with associated organ dysfunction, accounts for most childhood deaths due to infection globally. Evidence for the optimal support of children with septic shock refractory to the initial sepsis management bundle remains minimal. There is an urgent need for more effective interventions. Administration of hydrocortisone in children with septic shock might fasten shock resolution, and has been shown to dampen the systemic host immune response, augment adrenergic effects, and support the stress response. Ascorbic acid (vitamin C) is one of the most powerful naturally occurring antioxidants and has beneficial effects on multiple pathways which are severely deranged during septic shock. A regimen combining hydrocortisone, ascorbic acid, and thiamine termed "metabolic resuscitation" or "HAT therapy" has been tested in large trials in critically ill adults with sepsis with conflicting results. Available information on intravenous ascorbic acid indicates an excellent safety profile even at very high doses both in adults and children. Given the pharmacological properties and beneficial effects shown both in vitro and in animal studies, and its safety profile, ascorbic acid either as a single therapy or as part of HAT treatment represents a promising candidate for future pediatric sepsis treatments. While pediatric age groups may be more susceptible to ascorbic acid deficiency during sepsis, there is a lack of high-quality trial data on HAT therapy in this age group. A single centre retrospective study identified potential for mortality benefit in children with septic shock, and the results from a randomized controlled pilot trial are being awaited. It is imperative for pediatric research on ascorbic acid and HAT in children with sepsis to critically investigate key questions related to pharmacology, dosing, timing, feasibility, safety, effects on short- and long-term outcomes, and generalisability in view of the global burden of sepsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578751PMC
http://dx.doi.org/10.21037/tp-21-1DOI Listing

Publication Analysis

Top Keywords

ascorbic acid
24
septic shock
16
children septic
12
sepsis
8
pediatric sepsis
8
beneficial effects
8
safety profile
8
ascorbic
6
acid
6
children
5

Similar Publications

Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.

View Article and Find Full Text PDF

The rise of various diseases demands the development of new agents with antioxidant, antimicrobial, anti-inflammatory, enzyme-inhibiting, and cytotoxic properties. In this study, heterocyclic Schiff base complexes of Cu(II) featuring a benzo[]thiophene moiety were synthesized and their biological activities evaluated. The complexes were characterized using FT-IR, UV-Vis, and EPR spectroscopy, TG-DTG analysis, magnetic moment measurements, molar conductivity measurements, and elemental analyses.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Methotrexate is an anti-metabolic medication used to treat cancer. It causes oxidative stress in nerve tissue and has neurotoxic effects. A strong antioxidant and effective free radical scavenger is vitamin C.

View Article and Find Full Text PDF

: Cerebrovascular disease and dementia risk increases with age and lifetime risk is greater in women. Cerebrovascular dysfunction likely precedes cerebrovascular disease and dementia but the mechanisms are incompletely understood. We hypothesized that oxidative stress mediates cerebrovascular dysfunction with human aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!