A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioremediation potential of genus isolates from residual water, capable of tolerating lead through mechanisms of exopolysaccharide production and biosorption. | LitMetric

The mechanisms of tolerance to heavy metals used by some microorganisms identified by bioprospection processes are useful for the development and implementation of bioremediation strategies for contaminated environments with high toxic load caused by heavy metals. A total of seven native microbial isolates were obtained from wastewater bodies from an industrial zone in the municipality of Girardota, Antioquia, Colombia. Subsequently, they were selected to evaluate their lead tolerance capacity at different concentrations. In addition, some parameters were determined, such as the capacity to produce exopolysaccharides and their biosorption to understand potential mechanisms associated to lead tolerance. According to the biocehemical test (Vitek) and the molecular analysis of sequences of 16S rDNA, bacterial were identified as , and . We determined that the seven isolates had the capacity to tolerate concentrations higher than 50 mg/ml of lead, and that the concentration and exposure time (40 h) to this metal significantly affect the spp. isolates. Statistically significant differences were detected ( < 0.05) in the production of the exopolysaccharide (EPS) among the isolates. (P16) was the strain with the maximum absorbance exopolysaccharide measured. We evidenced that (P14) and (P20) have 80% capacity to biosorber lead using live mass (minimum range from 80.9% to 87%). It is suggested that the tolerance to lead exhibited by the environmental isolates of spp. can be attributed to the production of exopolysaccharides and biosorption, which are protection factors for its survival in contaminated places. Finally, it was determined that the adsorption measured from dead biomass was significant ( < 0.05) from 40 h of exposure to metal (Average 182.2 ± 7). We generated new knowledge about the potential use of the spp. genus to bioremediate affluent contaminated with heavy metals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569635PMC
http://dx.doi.org/10.1016/j.btre.2021.e00685DOI Listing

Publication Analysis

Top Keywords

heavy metals
8
lead tolerance
8
bioremediation potential
4
potential genus
4
isolates
4
genus isolates
4
isolates residual
4
residual water
4
water capable
4
capable tolerating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!