AI Article Synopsis

  • Concerns about the carbon footprint from flying to scientific conferences have grown in recent years, especially in environmental fields due to high carbon emissions.
  • Researchers analyzed the relationship between the number of conferences attended and the resulting publication output, discovering that increased attendance often leads to higher productivity, but those who are less productive contribute more to carbon emissions.
  • The study suggests that reducing conference attendance could significantly lower carbon footprints while enhancing productivity, and it advocates for setting guidelines to balance scientific collaboration with environmental responsibility.

Article Abstract

The carbon footprint of flying overseas to conferences, meetings, and workshops to share and build knowledge has been increasingly questioned over the last two decades, especially in environmental and climate sciences, due to the related colossal carbon emissions. Here, we infer the value of scientific meetings through the number of publications produced either directly or indirectly after attending a scientific conference, symposium, or workshop (i.e., the conference-related production) and the number of publications produced per meeting (i.e., the conference-related productivity) as proxies for the academic value of these meetings, and relate them to both the number of meetings attended and the related carbon emissions. We show that conference-related production and productivity, respectively, increase and decay with the number of meetings attended, and noticeably that the less productive people exhibit the largest carbon footprint. Taken together, our results imply that a twofold decrease in the carbon footprint of a given scientist would result in a twofold increase in productivity through a fivefold decrease in the number of meeting attended. In light of these figures, we call for both the implementation of objective and quantitative criteria related to the optimum number of conferences to attend in an effort to maximize scientific productivity while minimizing the related carbon footprint, and the development of a rationale to minimize the carbon emission related to scientific activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571599PMC
http://dx.doi.org/10.1002/ece3.8201DOI Listing

Publication Analysis

Top Keywords

carbon footprint
20
carbon
8
carbon emissions
8
number publications
8
publications produced
8
conference-related production
8
number meetings
8
meetings attended
8
number
6
footprint
5

Similar Publications

The development and implementation of county carbon control action plans in the Yellow River Basin (YRB) are crucial for realizing the "dual carbon" goals and modernizing national governance. Utilizing remote sensing data from 2001 to 2020, this study constructs a light-carbon conversion model and a carbon footprint model to simulate the carbon footprint of county energy consumption in the YRB. Employing spatial autocorrelation and spatial Durbin models, the study examines the temporal-spatial evolution characteristics and spatial effect mechanism.

View Article and Find Full Text PDF

Facilitated Channeling of Fixed Carbon and Energy into Chemicals in Artificial Phototrophic Communities.

J Am Chem Soc

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.

Light-driven CO biovalorization offers a promising route for coupling carbon mitigation with petrochemical replacement. Synthetic phototrophic communities that mimic lichens can reduce the metabolic burden with improved CO utilization. However, inefficient channeling of carbon and energy between species seriously hinders the collaborative CO-to-molecule route.

View Article and Find Full Text PDF

Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics.

Plant J

January 2025

Systems Biotechnology Group, Department Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany.

Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process.

View Article and Find Full Text PDF

Climate change impacts the demand of the construction industry to reduce its carbon footprint while increasing the resilience of the buildings. This twofold need emphasises better understanding and cost prediction of green resilient buildings based on their 'resilience' and 'sustainability', which is very limited or based on obsolete perceptions and stereotypes. This study presents a novel index to predict the cost of converting a conventional building to a green-resilient building.

View Article and Find Full Text PDF

Selective coupling of C platform molecules to C olefins is a cornerstone for establishing a sustainable chemical industry based on nonpetroleum sources. Vinyl chloride (CHCl), one of the top commodity petrochemicals, is commercially produced from coal- or oil-derived C hydrocarbon (acetylene and ethylene) feedstocks with a high carbon footprint. Here, we report a C-based route for vinyl chloride synthesis via the selective oxidative coupling of methyl chloride.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!