5-lipoxygenase-activating protein (FLAP), encoded by the arachidonate 5-lipoxygenase-activating protein gene, can adjust the biogenesis of proinflammatory leukotrienes to increase the adhesion and permeability of the vascular internal wall. Moreover, it participates in the process of atherosclerosis and is closely associated with ischemic stroke (IS). Accumulating evidence has shown that the expression levels of the gene are upregulated in patients with IS. However, the mechanism of action in IS remain elusive. The present study hypothesized that epigenetic regulation, including DNA methylation and microRNA (miR/miRNA) regulation, affects the expression levels of the gene. Therefore, 200 patients with a first diagnosis of acute IS and 200 healthy control subjects were enrolled in the present study. Initially, the mRNA expression levels of the gene were examined by reverse transcription-quantitative PCR. It was found that the mRNA levels of gene in the IS group were significantly higher compared with controls (P<0.05). Subsequently, the methylation status of 17 CpG sites located in the promoter region of was assessed by MethyTarget sequencing. However, the levels of methylation exhibited no significant differences between IS and control groups (P>0.05). Moreover, the expression levels of miR-335 and miR-495 were examined as two potential miRNAs targeting the gene. The expression levels of miR-335 and miR-495 in the IS group were significantly lower compared with the control group (P<0.05). Finally, the luciferase assay results indicated that the luciferase activity of the experimental group following co-transfection of miRNA mimic and wild-type reporter gene plasmid was significantly lower compared with the other experimental groups (P<0.05), suggesting that miR-335 and miR-495 could specifically bind to the 3'-untranslated region of the gene, thereby downregulating its expression. The present study provided preliminary evidence demonstrating that epigenetic regulation affects the expression of the gene in patients with IS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576617PMC
http://dx.doi.org/10.3892/etm.2021.10919DOI Listing

Publication Analysis

Top Keywords

expression levels
20
levels gene
16
epigenetic regulation
8
dna methylation
8
ischemic stroke
8
5-lipoxygenase-activating protein
8
levels mir-335
8
mir-335 mir-495
8
gene
7
expression
6

Similar Publications

The nanoscale organization of the Nipah virus fusion protein informs new membrane fusion mechanisms.

Elife

January 2025

Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada.

Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition affecting a substantial number of children globally, characterized by diverse aetiologies, including genetic and environmental factors. Emerging research suggests that neurovascular dysregulation during development could significantly contribute to autism. This review synthesizes the potential role of vascular abnormalities in the pathogenesis of ASD and explores insights from studies on valproic acid (VPA) exposure during neural tube development.

View Article and Find Full Text PDF

We aimed to explore the role of Amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.

View Article and Find Full Text PDF

Obesity can change the immune microenvironment of adipose tissue and induce inflammation. This study is dedicated to exploring the internal mechanism by which different intensities of exercise reprogram the immune microenvironment of epididymal adipose tissue in nutritionally obese mice. C57BL/6J male obese mouse models were constructed by high-fat diet, which were respectively obese control group (OC), moderate intensity continuous exercise group (HF-M), high intensity continuous exercise group (HF-H) and high intensity intermittent exercise group (HF-T).

View Article and Find Full Text PDF

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!