Chemotherapy combined with surgery is effective for patients with breast cancer (BC). However, chemoresistance restricts the effectiveness of BC treatment. Immune microenvironmental changes are of pivotal importance for chemotherapy responses. Thus, we sought to construct and validate an immune prognostic model based on chemosensitivity status in BC. Here, immune-related and chemosensitivity-related genes were obtained from GSE25055. Then, univariate analysis was employed to identify prognostic-related gene pairs from the intersection of the two parts of the genes, and modified least absolute shrinkage and selection operator (LASSO) analysis was performed to build a prognostic model. Furthermore, we investigated the efficiency of this model from various perspectives, and further validation was performed using the Cancer Genome Atlas (TCGA) cohorts. We identified seven immune and chemosensitivity-related gene pairs and incorporated them into the Cox regression model. After multilevel validation, the risk model was found to be closely related to the survival rate, various clinical characteristics, tumor mutation burden (TMB) score, immune checkpoints, and response to chemotherapeutic drugs. In addition, the model was verified to exhibit predictive capacity as an independent factor over other candidate clinical features. Notably, the constructed nomogram was more accurate than any single factor. Altogether, the risk score model and the nomogram have potential predictive value and may have important practical implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576363PMC
http://dx.doi.org/10.3389/fimmu.2021.734745DOI Listing

Publication Analysis

Top Keywords

prognostic model
12
model
8
breast cancer
8
gene pairs
8
immune-related genes
4
genes construct
4
construct novel
4
novel prognostic
4
model breast
4
cancer chemosensitivity-based
4

Similar Publications

Association between D-dimer to lymphocyte ratio and in hospital all-cause mortality in elderly patients with sepsis: a cohort of 1123 patients.

Front Cell Infect Microbiol

January 2025

Department of Critical Care Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China.

Background: The D-dimer to lymphocyte ratio (DLR), a novel inflammatory biomarker, had been shown to be related to adverse outcomes in patients with various diseases. However, there was limited research on the relationship between the DLR and adverse outcomes in patients with infectious diseases, particularly those with sepsis. Therefore, this study aimed to explore the association between the DLR and in hospital all-cause mortality in elderly patients with sepsis.

View Article and Find Full Text PDF

Objectives: This study aimed to clinically validate the six-gene prognostic molecular clinical risk score (MCRS) for the prediction of aggressive prostate cancer in diagnostic biopsy tissue.

Methods: MCRS was evaluated in prostate biopsy tissue from a Swedish cohort of men with prostate cancer (UPCA,  = 100). The primary outcome of adverse pathology and secondary outcomes of high primary Gleason (≥G4) and high pathological T-stage (≥T3) were assessed by likelihood ratio statistics and area under the receiver operating characteristic curves from logistic regression models; time to biochemical recurrence was assessed by likelihood ratio statistics and C-indexes from Cox proportional hazard regression models.

View Article and Find Full Text PDF

Background: Neoadjuvant, endocrine, and targeted therapies have significantly improved the prognosis of breast cancer (BC). However, due to the high heterogeneity of cancer, some patients cannot benefit from existing treatments. Increasing evidence suggests that amino acids and their metabolites can alter the tumor malignant behavior through reshaping tumor microenvironment and regulation of immune cell function.

View Article and Find Full Text PDF

Aim: This study aims to create and validate a novel systematic immune-inflammation-nutrition (SIIN) score to provide a non-invasive and accurate prognostic tool for head and neck squamous cell carcinoma (HNSCC) patients.

Methods: 259 participants diagnosed with HNSCC from the First Affiliated Hospital of Xi'an Jiaotong University between 2008 and 2017 was included in this retrospective study. Patients were assigned to training (n=181) and validation (n=78) sets.

View Article and Find Full Text PDF

Background: The rising incidence of breast cancer and its heterogeneity necessitate precise tools for predicting patient prognosis and tailoring personalized treatments. Epigenetic changes play a critical role in breast cancer progression and therapy responses, providing a foundation for prognostic model development.

Methods: We developed the Machine Learning-derived Epigenetic Model (MLEM) to identify prognostic epigenetic gene patterns in breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!