The current study investigated the exposure of the Mediterranean mussel () to gold nanoparticles decorated zinc oxide (Au-ZnO NPs) and phosphonate [Diethyl (3-cyano-1-hydroxy-1-phenyl-2-methylpropyl)] phosphate (PC). The mussels were exposed to concentrations of 50 and 100 µg L of both compounds alone, as well as to a mixture of both pollutants (i.e. Mix). The singular and the combined effect of each pollutant was investigated by measuring the concentration of various metals (i.e., Cu, Fe, Mn, Zn and Au) in the the digestive glands and gills of mussels, their filtration capacity (FC), respiration rate (RR) and the response of oxidative biomarkers, respectively, following 14 days of exposure. The concentrations of Cu, Fe, Mn, Zn and Au increased directly with Au-ZnO NPs in mussel tissues, but significantly only for Zn. In contrast, the mixture of Au-ZnO100 NPs and PC100 did not induce any significant increase in the content of metals in digetsve glands and gills, suggesting antagonistic interactions between contaminants. In addition, FC and RR levels decreased following exposure to Au-ZnO100 NPs and PC100 treatments and no significant alterations were observed after the exposure to 50 µg.L of both contaminants and Mix. Hydrogen peroxide (HO) level, GSH/GSSG ratio, superoxide dismutase (SOD), catalase (CAT) and acetylcholinesterase (AChE) activities showed significant changes following the exposure to both Au-ZnO NPs and PC, in the gills and the digestive glands of the mussel. However, no significant modifications were observed in both organs following the exposure to Mix. The current study advances the understanding of the toxicity of NPs and phosphonates on and sets the path for future ecotoxicological studies regarding the synergic effects of these substances on marine species. Moreover, the current experiment suggests that the oxidative stress and the neurotoxic pathways are responsive following the exposure of marine invertebrates to both nanoparticles and phosphonates, with potential antagonist interactions of these substances on the physiology of targeted species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568998 | PMC |
http://dx.doi.org/10.1016/j.sjbs.2021.07.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!