This paper focus on multiple CNN-based (Convolutional Neural Network) models for COVID-19 forecast developed by our research team during the first French lockdown. In an effort to understand and predict both the epidemic evolution and the impacts of this disease, we conceived models for multiple indicators: daily or cumulative confirmed cases, hospitalizations, hospitalizations with artificial ventilation, recoveries, and deaths. In spite of the limited data available when the lockdown was declared, we achieved good short-term performances at the national level with a classical CNN for hospitalizations, leading to its integration into a hospitalizations surveillance tool after the lockdown ended. Also, A Temporal Convolutional Network with quantile regression successfully predicted multiple COVID-19 indicators at the national level by using data available at different scales (worldwide, national, regional). The accuracy of the regional predictions was improved by using a hierarchical pre-training scheme, and an efficient parallel implementation allows for quick training of multiple regional models. The resulting set of models represent a powerful tool for short-term COVID-19 forecasting at different geographical scales, complementing the toolboxes used by health organizations in France.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044508 | PMC |
http://dx.doi.org/10.1007/s10489-021-02359-6 | DOI Listing |
Sci Rep
January 2025
University of Ghana, P.O. Box 134, Legon-Accra, Ghana.
Sentiment analysis has become a difficult and important task in the current world. Because of several features of data, including abbreviations, length of tweet, and spelling error, there should be some other non-conventional methods to achieve the accurate results and overcome the current issue. In other words, because of those issues, conventional approaches cannot perform well and accomplish results with high efficiency.
View Article and Find Full Text PDFSci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Data Science, Minjiang University, Fuzhou, 350018, China.
This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.
View Article and Find Full Text PDFJ Neurosci Methods
January 2025
Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. Electronic address:
Background: The hippocampus plays a crucial role in memory and is one of the first structures affected by Alzheimer's disease. Postmortem MRI offers a way to quantify the alterations by measuring the atrophy of the inner structures of the hippocampus. Unfortunately, the manual segmentation of hippocampal subregions required to carry out these measures is very time-consuming.
View Article and Find Full Text PDFComput Biol Med
January 2025
LMA Laboratory, University of Bejaia, Bejaia 06000, Algeria. Electronic address:
Social networks are increasingly taking over daily life, creating a volume of unsecured data and making it very difficult to capture safe data, especially in times of crisis. This study aims to use a Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM)-based hybrid model for health monitoring and health crisis forecasting. It consists of efficiently retrieving safe content from multiple social media sources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!