With the spread of COVID-19, there is an urgent need for a fast and reliable diagnostic aid. For the same, literature has witnessed that medical imaging plays a vital role, and tools using supervised methods have promising results. However, the limited size of medical images for diagnosis of CoVID19 may impact the generalization of such supervised methods. To alleviate this, a new clustering method is presented. In this method, a novel variant of a gravitational search algorithm is employed for obtaining optimal clusters. To validate the performance of the proposed variant, a comparative analysis among recent metaheuristic algorithms is conducted. The experimental study includes two sets of benchmark functions, namely standard functions and CEC2013 functions, belonging to different categories such as unimodal, multimodal, and unconstrained optimization functions. The performance comparison is evaluated and statistically validated in terms of mean fitness value, Friedman test, and box-plot. Further, the presented clustering method tested against three different types of publicly available CoVID19 medical images, namely X-ray, CT scan, and Ultrasound images. Experiments demonstrate that the proposed method is comparatively outperforming in terms of accuracy, precision, sensitivity, specificity, and F1-score.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823179 | PMC |
http://dx.doi.org/10.1007/s10489-020-02122-3 | DOI Listing |
Med Phys
January 2025
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.
Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.
Breast Cancer Res Treat
January 2025
Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, China.
Background: The heterogeneity of breast cancer (BC) necessitates the identification of novel subtypes and prognostic models to enhance patient stratification and treatment strategies. This study aims to identify novel BC subtypes based on PANoptosis-related genes (PRGs) and construct a robust prognostic model to guide individualized treatment strategies.
Methods: The transcriptome data along with clinical data of BC patients were sourced from the TCGA and GEO databases.
Sci Rep
January 2025
School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China.
Owing to China's massive area and vastly differing regional variations in the types and efficiency of energy, the spatiotemporal distributions of regional carbon emissions (CE) vary widely. Regional CE study is becoming more crucial for determining the future course of sustainable development worldwide. In this work, two types of nighttime light data were integrated to expand the study's temporal coverage.
View Article and Find Full Text PDFNat Methods
January 2025
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that generalize across experimental protocols and map neuronal activity at the laminar and subpopulation-specific levels, beyond atlas-defined regions. Here, we present artficial intelligence-based cartography of ensembles (ACE), an end-to-end pipeline that employs three-dimensional deep learning segmentation models and advanced cluster-wise statistical algorithms, to enable unbiased mapping of local neuronal activity and connectivity.
View Article and Find Full Text PDFNat Methods
January 2025
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!